Skip to main content
Log in

Some q-exponential Formulas for Finite-Dimensional \(\square _{q}\)-Modules

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

We consider the algebra \(\square _{q}\) which is a mild generalization of the quantum algebra \(U_{q}(\frak {sl}_{2})\). The algebra \(\square _{q}\) is defined by generators and relations. The generators are \(\{x_{i}\}_{i\in \mathbb {Z}_{4}}\), where \(\mathbb {Z}_{4}\) is the cyclic group of order 4. For \(i\in \mathbb {Z}_{4}\) the generators xi,xi+ 1 satisfy a q-Weyl relation, and xi,xi+ 2 satisfy a cubic q-Serre relation. For \(i\in \mathbb {Z}_{4}\) we show that the action of xi is invertible on every nonzero finite-dimensional \(\square _{q}\)-module. We view \(x_{i}^{-1}\) as an operator that acts on nonzero finite-dimensional \(\square _{q}\)-modules. For \(i\in \mathbb {Z}_{4}\), define \(\mathfrak {n}_{i,i + 1}=q(1-x_{i}x_{i + 1})/(q-q^{-1})\). We show that the action of \(\mathfrak {n}_{i,i + 1}\) is nilpotent on every nonzero finite-dimensional \(\square _{q}\)-module. We view the q-exponential \(\text {{exp}}_{q}(\mathfrak {n}_{i,i + 1})\) as an operator that acts on nonzero finite-dimensional \(\square _{q}\)-modules. In our main results, for \(i,j\in \mathbb {Z}_{4}\) we express each of \(\text {{exp}}_{q}(\mathfrak {n}_{i,i + 1})x_{j}\text {{exp}}_{q}(\mathfrak {n}_{i,i + 1})^{-1}\) and \(\text {{exp}}_{q}(\mathfrak {n}_{i,i + 1})^{-1}x_{j}\text {{exp}}_{q}(\mathfrak {n}_{i,i + 1})\) as a polynomial in \(\{x_{k}^{\pm 1}\}_{k\in \mathbb {Z}_{4}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alnajjar, H.: Leonard pairs associated with the equitable generators of the quantum algebra \(u_{q}(\mathfrak {sl}_{2})\). Linear Multilinear Algebra 59, 1127–1142 (2011)

    Article  MathSciNet  Google Scholar 

  2. Baseilhac, P.: An integrable structure related with tridiagonal algebras. Nuclear Phys. B 705, 605–619 (2005)

    Article  MathSciNet  Google Scholar 

  3. Funk-Neubauer, D.: Bidiagonal pairs, the Lie algebra \(\mathfrak {sl}_{2}\), and the quantum group \(U_{q}(\mathfrak {sl}_{2})\). J. Algebra Appl. 12, 1250207, 46 (2013)

    Article  MathSciNet  Google Scholar 

  4. Huang, H.: The classification of Leonard triples of QRacah type. Linear Algebra Appl. 436, 1442–1472 (2012)

    Article  MathSciNet  Google Scholar 

  5. Miki, K.: Finite dimensional modules for the q-tetrahedron algebra. Osaka J. Math. 47(2), 559–589 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Ito, T., Rosengren, H., Terwilliger, P.: Evaluation modules for the q-tetrahedron algebra. Linear Algebra Appl. 451, 107–168 (2014)

    Article  MathSciNet  Google Scholar 

  7. Ito, T., Terwilliger, P.: Tridiagonal pairs and the quantum affine algebra uq(sl2). Ramanujan J. 13, 39–62 (2007)

    Article  MathSciNet  Google Scholar 

  8. Ito, T., Terwilliger, P.: Two non-nilpotent linear transformations that satisfy the cubic q-Serre relations. J. Algebra Appl. 6, 477–503 (2007)

    Article  MathSciNet  Google Scholar 

  9. Ito, T., Terwilliger, P.: The q-tetrahedron algebra and its finite-dimensional irreducible modules. Comm. Algebra 35, 3415–3439 (2007)

    Article  MathSciNet  Google Scholar 

  10. Ito, T., Terwilliger, P., Weng, C.: The quantum algebra \(u_{q}(\mathfrak {sl}_{2})\) and its equitable presentation. J. Algebra 298, 284–301 (2006)

    Article  MathSciNet  Google Scholar 

  11. Lusztig, G.: Quantum deformations of certain simple modules over enveloping algebras. Adv. Math. 70, 237–249 (1988)

    Article  MathSciNet  Google Scholar 

  12. Lusztig, G.: On quantum groups. J. Algebra 131, 464–475 (1990)

    Article  Google Scholar 

  13. Tanisaki, T.: Lie algebras and quantum groups. Kyoritsu Publishers, Tokyo (2002)

    Google Scholar 

  14. Terwilliger, P.: The equitable presentation for the quantum group \(u_{q}(\mathfrak {g})\) associated with a symmetrizable Kac-Moody algebra \(\mathfrak {g}\). J. Algebra 298, 302–319 (2006)

    Article  MathSciNet  Google Scholar 

  15. Terwilliger, P.: The universal Askey-Wilson algebra and the equitable presentation of \(U_{q}(\mathfrak {sl}_{2})\). SIGMA 7, 099, 26 (2011)

    MATH  Google Scholar 

  16. Terwilliger, P.: Finite-dimensional irreducible \(u_{q}(\mathfrak {sl}_{2})\)-modules from the equitable point of view. Linear Algebra Appl. 439, 358–400 (2013)

    Article  MathSciNet  Google Scholar 

  17. Terwilliger, P.: Billiard Arrays and finite-dimensional irreducible \(u_{q}(\mathfrak {sl}_{2})\)-modules. Linear Algebra Appl. 461, 211–270 (2014)

    Article  MathSciNet  Google Scholar 

  18. Terwilliger, P.: The Lusztig automorphism of \(U_{q}(\mathfrak {sl}_{2})\) from the equitable point of view. J. Algebra Appl. 16(12), 1750235, 26 (2017)

    Article  MathSciNet  Google Scholar 

  19. Terwilliger, P.: The q-Onsager algebra and the positive part of \(u_{q}(\widehat {\mathfrak {sl}_{2}})\). Linear Algebra Appl. 521, 19–56 (2017)

    Article  MathSciNet  Google Scholar 

  20. The Sage Developers. SageMath, the Sage Mathematics Software System (Version 7.0). http://www.sagemath.org (2016)

  21. Worawannotai, C.: Dual polar graphs, the quantum algebra \(u_{q}(\mathfrak {sl}_{2})\), and Leonard systems of dual q-Krawtchouk type. Linear Algebra Appl. 438, 443–497 (2013)

    Article  MathSciNet  Google Scholar 

  22. Yang, Y.: Finite-dimensional irreducible \(\square _{q}\)-modules and their Drinfel’d polynomials. Linear Algebra Appl. 537, 160–190 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This paper was written while the author was a graduate student at the University of Wisconsin-Madison. The author would like to thank his advisor, Paul Terwilliger, for offering many valuable ideas and suggestions.

As part of computational evidence, the open software SageMath (see [20]) was used to verify our main results Theorems 8.1, 8.2 and Theorems 9.3–9.6 on low dimensional irreducible \(\square _{q}\)-modules.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Yang.

Additional information

Presented by: Anne Schilling

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y. Some q-exponential Formulas for Finite-Dimensional \(\square _{q}\)-Modules. Algebr Represent Theor 23, 467–482 (2020). https://doi.org/10.1007/s10468-019-09862-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-019-09862-y

Keywords

Mathematics Subject Classification (2010)

Navigation