Skip to main content
Log in

On the Subregular J-Rings of Coxeter Systems

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

We recall Lusztig’s construction of the asymptotic Hecke algebra J of a Coxeter system (W,S) via the Kazhdan–Lusztig basis of the corresponding Hecke algebra. The algebra J has a direct summand JE for each two-sided Kazhdan–Lusztig cell of W, and we study the summand JC corresponding to a particular cell C called the subregular cell. We develop a combinatorial method involving truncated Clebsch–Gordan rules to compute JC without using the Kazhdan–Lusztig basis. As applications, we deduce some connections between JC and the Coxeter diagram of W, and we show that for certain Coxeter systems JC contains subalgebras that are free fusion rings in the sense of Banica and Vergnioux (Noncommut. Geom. 3(3), 327–359, 2009), thereby connecting the subalgebras to compact quantum groups arising from operator algebra theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aho, A.V., Hopcroft, J.E.: The Design and Analysis of Computer Algorithms, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1974)

    MATH  Google Scholar 

  2. Bakalov, B., Kirillov, A. Jr.: Lectures on Tensor Categories and Modular Functors, University Lecture Series, vol. 21. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  3. Banica, T., Speicher, R.: Liberation of orthogonal Lie groups. Adv. Math. 222(4), 1461–1501 (2009). https://doi.org/10.1016/j.aim.2009.06.009

    Article  MathSciNet  MATH  Google Scholar 

  4. Banica, T., Vergnioux, R.: Fusion rules for quantum reflection groups. J. Noncommut. Geom. 3(3), 327–359 (2009). https://doi.org/10.4171/JNCG/39

    Article  MathSciNet  MATH  Google Scholar 

  5. Bezrukavnikov, R.: On tensor categories attached to cells in affine Weyl groups. In: Representation Theory of Algebraic Groups and Quantum Groups, Adv. Stud. Pure Math., vol. 40, pp 69–90. Math. Soc., Japan (2004)

  6. Bezrukavnikov, R., Finkelberg, M., Ostrik, V.: On tensor categories attached to cells in affine Weyl groups. III. Israel J. Math. 170, 207–234 (2009). https://doi.org/10.1007/s11856-009-0026-9

    Article  MathSciNet  MATH  Google Scholar 

  7. Bezrukavnikov, R., Ostrik, V.: On tensor categories attached to cells in affine Weyl groups. II. In: Representation Theory of Algebraic Groups and Quantum Groups, Adv. Stud. Pure Math., vol. 40, pp 101–1-19. Math. Soc., Japan (2004)

  8. Björner, A., Brenti, F.: Combinatorics of Coxeter groups Graduate Texts in Mathematics, vol. 231. Springer, New York (2005)

    MATH  Google Scholar 

  9. Curtis, C.: The Hecke algebra of a finite Coxeter group. In: The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), Proc. Sympos. Pure Math., vol. 47, pp 51–60. Amer. Math. Soc., Providence (1987)

  10. Curtis, C.W., Iwahori, N., Kilmoyer, R.: Hecke algebras and characters of parabolic type of finite groups with (B, N)-pairs. Inst. Hautes Études Sci. Publ. Math. 40, 81–116 (1971)

    Article  MathSciNet  Google Scholar 

  11. Developers, T.S.: SageMath, the Sage Mathematics Software System (Version 7.2.). http://www.sagemath.org (2016)

  12. Dipper, R., James, G.: Representations of Hecke algebras of general linear groups. Proc. London Math. Soc. (3) 52(1), 20–52 (1986). https://doi.org/10.1112/plms/s3-52.1.20

    Article  MathSciNet  MATH  Google Scholar 

  13. Elias, B., Williamson, G.: The Hodge theory of Soergel bimodules. Ann. Math. (2) 180(3), 1089–1136 (2014). https://doi.org/10.4007/annals.2014.180.3.6

    Article  MathSciNet  MATH  Google Scholar 

  14. Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor Categories Mathematical Surveys and Monographs, vol. 205. American Mathematical Society, Providence (2015)

    MATH  Google Scholar 

  15. Etingof, P., Khovanov, M.: Representations of tensor categories and Dynkin diagrams. Internat. Math. Res. Notices 5, 235–247 (1995). https://doi.org/10.1155/S1073792895000183

    Article  MathSciNet  MATH  Google Scholar 

  16. Freslon, A.: Fusion (semi)rings arising from quantum groups. J. Algebra 417, 161–197 (2014). https://doi.org/10.1016/j.jalgebra.2014.06.029

    Article  MathSciNet  MATH  Google Scholar 

  17. Geck, M.: Kazhdan-Lusztig cells and decomposition numbers. Represent. Theory 2, 264–277 (1998). https://doi.org/10.1090/S1088-4165-98-00042-9. (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  18. Geck, M., Pfeiffer, G.: Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras, London Mathematical Society Monographs New Series, vol. 21. The Clarendon Press, Oxford University Press, New York (2000)

    MATH  Google Scholar 

  19. Kassel, C.: Quantum Groups Graduate Texts in Mathematics, vol. 155. Springer, New York (1995)

    Google Scholar 

  20. Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. Math. 53(2), 165–184 (1979). https://doi.org/10.1007/BF01390031

    Article  MathSciNet  MATH  Google Scholar 

  21. Lusztig, G.: Some examples of square integrable representations of semisimple p-adic groups. Trans. Amer. Math. Soc. 277(2), 623–653 (1983). https://doi.org/10.2307/1999228

    Article  MathSciNet  MATH  Google Scholar 

  22. Lusztig, G.: Characters of Reductive Groups over a Finite Field, Annals of Mathematics Studies, vol. 107. Princeton University Press, Princeton (1984)

    Book  Google Scholar 

  23. Lusztig, G.: Cells in affine Weyl groups. II. J. Algebra 109 (2), 536–548 (1987). https://doi.org/10.1016/0021-8693(87)90154-2

    Article  MathSciNet  MATH  Google Scholar 

  24. Lusztig, G.: Cells in affine Weyl groups. III. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34(2), 223–243 (1987)

    MathSciNet  MATH  Google Scholar 

  25. Lusztig, G.: Leading coefficients of character values of Hecke algebras The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), Proc. Sympos. Pure Math., vol. 47, pp 235–262. Amer. Math. Soc., Providence (1987)

  26. Lusztig, G.: Cells in affine Weyl groups. IV. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36(2), 297–328 (1989)

    MathSciNet  MATH  Google Scholar 

  27. Lusztig, G.: Cells in affine Weyl groups and tensor categories. Adv. Math. 129 (1), 85–98 (1997). https://doi.org/10.1006/aima.1997.1645

    Article  MathSciNet  MATH  Google Scholar 

  28. Lusztig, G.: Hecke algebras with unequal parameters. arXiv:math/0208154 (2014)

  29. Moore, G., Seiberg, N.: Classical and quantum conformal field theory. Comm. Math. Phys. 123(2), 177–254 (1989). http://projecteuclid.org/euclid.cmp/1104178762

    Article  MathSciNet  Google Scholar 

  30. Raum, S.: Isomorphisms and fusion rules of orthogonal free quantum groups and their free complexifications. Proc. Amer. Math. Soc. 140 (9), 3207–3218 (2012). https://doi.org/10.1090/S0002-9939-2012-11264-X

    Article  MathSciNet  MATH  Google Scholar 

  31. Turaev, V.G.: Quantum Invariants of Knots and 3-Manifolds, de Gruyter Studies in Mathematics, revised, vol. 18. Walter de Gruyter & Co., Berlin (2010)

  32. Xu, T.: Sage code for Hecke and asymptotic Hecke algebras. https://github.com/TianyuanXu/mysagecode (2017)

Download references

Acknowledgements

It is my great pleasure to thank Victor Ostrik for numerous helpful suggestions. I am very grateful to Alexandru Chirvasitu and Amaury Freslon for helpful discussions about free fusion rings and compact quantum groups. I would also like to acknowledge the mathematical software SageMath [11], which was used extensively in our computations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianyuan Xu.

Additional information

Presented by: Peter Littelmann

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, T. On the Subregular J-Rings of Coxeter Systems. Algebr Represent Theor 22, 1479–1512 (2019). https://doi.org/10.1007/s10468-018-9829-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-018-9829-x

Keywords

Mathematics Subject Classification (2010)

Navigation