Skip to main content
Log in

Ordered Tensor Categories and Representations of the Mackey Lie Algebra of Infinite Matrices

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

We introduce (partially) ordered Grothendieck categories and apply results on their structure to the study of categories of representations of the Mackey Lie algebra of infinite matrices \(\mathfrak {gl}^{M}\left (V,V_{*}\right )\). Here \(\mathfrak {gl}^{M}\left (V,V_{*}\right )\) is the Lie algebra of endomorphisms of a nondegenerate pairing of countably infinite-dimensional vector spaces \(V_{*}\otimes V\to \mathbb {K}\), where \(\mathbb {K}\) is the base field. Tensor representations of \(\mathfrak {gl}^{M}\left (V,V_{*}\right )\) are defined as arbitrary subquotients of finite direct sums of tensor products (V)m ⊗ (V)nVp where V denotes the algebraic dual of V. The category \(\mathbb {T}^{3}_{\mathfrak {gl}^{M}\left (V,V_{*}\right )}\) which they comprise, extends a category \(\mathbb {T}_{\mathfrak {gl}^{M}\left (V,V_{*}\right )}\) previously studied in Dan-Cohen et al. Adv. Math. 289, 205–278, (2016), Penkov and Serganova (2014) and Sam and Snowden Forum Math. Sigma 3(e11):108, (2015) . Our main result is that \(\mathbb {T}^{3}_{\mathfrak {gl}^{M}\left (V,V_{*}\right )}\) is a finite-length, Koszul self-dual, tensor category with a certain universal property that makes it into a “categorified algebra” defined by means of a handful of generators and relations. This result uses essentially the general properties of ordered Grothendieck categories, which yield also simpler proofs of some facts about the category \(\mathbb {T}_{\mathfrak {gl}^{M}\left (V,V_{*}\right )}\) established in Penkov and Serganova (2014). Finally, we discuss the extension of \(\mathbb {T}^{3}_{\mathfrak {gl}^{M}\left (V,V_{*}\right )}\) obtained by adjoining the algebraic dual (V) of V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Beilinson, A., Ginzburg, V., Soergel, W.: Koszul duality patterns in representation theory. J. Amer. Math. Soc. 9(2), 473–527 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chirvasitu, A.: Three results on representations of mackey lie algebras. In: Mason, G., Penkov, I., Wolf, J.A. (eds.) Developments and Retrospectives in Lie Theory, Developments in Mathematics, vol. 38, pp. 99–109. Springer International Publishing (2014)

  3. Cline, E., Parshall, B., Scott, L.: Finite-dimensional algebras and highest weight categories. J. Reine Angew. Math. 391, 85–99 (1988)

    MathSciNet  MATH  Google Scholar 

  4. Comes, J., Ostrik, V.: On blocks of deligne’s category \(\underline {\text {Rep}}(S_{t})\). Adv. Math. 226(2), 1331–1377 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dan-Cohen, E., Penkov, I., Serganova, V.: A Koszul category of representations of finitary Lie algebras. Adv. Math. 289, 250–278 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gabriel, P.: Des catégories abéliennes. Bull. Soc. Math. France 90, 323–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gelfand, S.I., Manin, Y.I.: Methods of homological algebra. Springer Monographs in Mathematics, 2nd edn. Springer-Verlag, Berlin (2003)

    Book  Google Scholar 

  8. Hotta, R., Takeuchi, K., Tanisaki, T.: D-modules, perverse sheaves, and representation theory, Progress in Mathematics, vol. 236. Birkhäuser Boston, Inc., Boston (2008). Translated from the 1995 Japanese edition by Takeuchi

    Book  MATH  Google Scholar 

  9. Jantzen, J.C.: Representations of algebraic groups, Mathematical Surveys and Monographs, vol. 107, 2nd edn. American Mathematical Society, Providence (2003)

    Google Scholar 

  10. Martínez, J.P., López Peña, J., Ştefan, D.: Koszul pairs. Applications. ArXiv e-prints (2010)

  11. Lin, B.I.-P.: Semiperfect coalgebras. J. Algebra 49(2), 357–373 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  12. Macdonald, I.G.: Symmetric functions and Hall polynomials. Oxford Mathematical Monographs. The Clarendon Press, 2nd edn. Oxford University Press, New York (1995). With contributions by A Zelevinsky, Oxford Science Publications

    Google Scholar 

  13. Mackey, G.W.: On infinite-dimensional linear spaces. Trans. Amer. Math. Soc. 57, 155–207 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  14. Penkov, I., Serganova, V.: Categories of integrable s l()-, o()-, s p()-modules. In: Representation theory and mathematical physics, Contemp. Math., vol. 557, pp. 335–357. Amer. Math. Soc., Providence, RI (2011)

  15. Penkov, I., Serganova, V.: Tensor representations of Mackey Lie algebras and their dense subalgebras. In: Developments and retrospectives in Lie theory, Dev. Math., vol. 38, pp. 291–330. Springer, Cham (2014)

  16. Penkov, I., Styrkas, K.: Tensor representations of classical locally finite Lie algebras. In: Developments and trends in infinite-dimensional Lie theory, Progr. Math., vol. 288, pp. 127–150. Birkhäuser Boston Inc., Boston, MA (2011)

  17. Polishchuk, A., Positselski, L.: Quadratic algebras, University Lecture Series, vol. 37. American Mathematical Society, Providence (2005)

    MATH  Google Scholar 

  18. Popescu, N.: Abelian categories with applications to rings and modules. Academic Press, London (1973). London Mathematical Society Monographs, No 3

    MATH  Google Scholar 

  19. Positselski, L.: Koszul property and Bogomolov’s, conjecture. Int. Math. Res. Not. 31, 1901–1936 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sam, S.V., Snowden, A.: Stability patterns in representation theory. Forum Math. Sigma 3(e11), 108 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Sweedler, M.E.: Hopf algebras. Mathematics Lecture Note Series. W. A. Benjamin, Inc., New York (1969)

    Google Scholar 

  22. Takeuchi, M.: Morita theorems for categories of comodules. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24(3), 629–644 (1977)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank Vera Serganova for sharp comments on the topic of this paper, as well as the anonymous referee for a very careful reading and illuminating remarks on an initial draft.

A. C. was partially funded through NSF grant DMS-1565226. I. P. acknowledges continued partial support by the DFG through the Priority Program “Representation Theory” and through grant PE 980/6-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandru Chirvasitu.

Additional information

Presented by Peter Littelmann.

To Jean-Louis Koszul on his 95th birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chirvasitu, A., Penkov, I. Ordered Tensor Categories and Representations of the Mackey Lie Algebra of Infinite Matrices. Algebr Represent Theor 22, 249–279 (2019). https://doi.org/10.1007/s10468-018-9765-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-018-9765-9

Keywords

Mathematics Subject Classification (2010)

Navigation