Skip to main content
Log in

Resolving Resolution Dimensions

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

Let \(\mathcal{A}\) be an abelian category. A subcategory \(\mathcal{X}\) of \(\mathcal{A}\) is called a resolving subcategory if \(\mathcal{X}\) is closed under extensions and kernels of epimorphisms and contains all projective objects of \(\mathcal{A}\). In this paper, we consider the \(\mathcal{X}\)-resolution dimensions and special \(\mathcal{X}\)-precovers for a resolving subcategory \(\mathcal{X}\) of \(\mathcal{A}.\) Many results in Araya et al. (J Math Kyoto Univ 45:287–306, 2005), Auslander and Bridger (Mem Am Math Soc(94), 1969), Avramov and Martsinkovsky (Proc Lond Math Soc 85:393–440, 2002), Christensen (2000), Christensen et al. (J Algebra 302:231–279, 2006), Holm (J Pure Appl Algebra 189:167–193, 2004), Holm and Jørgensen (J Pure Appl Algebra 205:423–445, 2006), Sather-Wagstaff et al. (Algebr Represent Theor 14:403–428, 2011), Takahashi and White (Math Scand 106:5–22, 2010), White (J Commut Algebra 2:111–137, 2010) and Xu (1996) are generalized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araya, T., Takahashi, R., Yoshino, Y.: Homological invariants associated to semi-dualizing bimodules. J. Math. Kyoto Univ. 45, 287–306 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Auslander, M., Bridger, M.: Stable module theory. Mem. Amer. Math. Soc. 94, (1969)

  3. Auslander, M., Buchweitz, R.-O.: The homological theory of maximal CohenC-Macaulay approximations. Mém. Soc. Math. France (N.S.) 38, 5–37 (1989); Colloque en l’honneur de Pierre Samuel, Orsay (1987)

  4. Avramov, L.L., Martsinkovsky, A.: Absolute, relative and Tate cohomology of modules of finite Gorenstein dimension. Proc. Lond. Math. Soc. 85, 393–440 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Christensen, L.W.: Gorenstein dimensions. In: Lecture Notes in Math., vol. 1747. Springer, Berlin (2000)

    Google Scholar 

  6. Christensen, L.W., Frankild, A., Holm, H.: On Gorenstein projective, injective and flat dimensions—a functorial description with applications. J. Algebra 302, 231–279 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Enochs, E.E., Jenda, O.M.G.: Relative Homological Algebra. Berlin, New York (2000)

    Book  MATH  Google Scholar 

  8. Enochs, E.E., Jenda, O.M.G.: Gorenstein injective and projective modules. Math. Z. 220(4), 611–633 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Foxby, H.B.: Gorenstein modules and related modules. Math. Scand. 31, 267–284 (1972)

    MathSciNet  Google Scholar 

  10. Happel, D.: Selforthogonal modules, Abelian groups and modules. In: Math. Appl., vol. 343, pp. 257–276. Kluwer Acad. Publ., Dordrecht (1995)

    Google Scholar 

  11. Holm, H., White, D.: Foxby equivalence over associative rings. J. Math. Kyoto Univ. 47, 781–808 (2007)

    MathSciNet  MATH  Google Scholar 

  12. Holm, H.: Gorenstein homological dimensions. J. Pure Appl. Algebra 189, 167–193 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Holm, H., Jørgensen, P.: Semi-dualizing modlues and related Gorenstein homological dimensions. J. Pure Appl. Algebra 205, 423–445 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sather-Wagstaff, S., Sharif, T., White, D.: AB-contexts and stability for Gorenstein flat modules with respect to semidualizing modules. Algebr. Represent. Theor. 14, 403–428 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Takahashi, R., White, D.: Homological aspects of semidualizing modules. Math. Scand. 106, 5–22 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Vasconcelos, W.V.: Divisor theory in module categories. North-Holland Math. Stud., vol. 14. North-Holland Publishing Co., Amsterdam (1974)

    Google Scholar 

  17. White, D.: Gorenstein porjective dimension with respect to a semidualizing module. J. Commut. Algebra 2, 111–137 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Xu, J.: Flat covers of modules. In: Lecture Notes in Math., vol. 1634. Springer, Berlin (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaosheng Zhu.

Additional information

Supported by the National Natural Science Foundation of China (No.10971090).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, X. Resolving Resolution Dimensions. Algebr Represent Theor 16, 1165–1191 (2013). https://doi.org/10.1007/s10468-012-9351-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-012-9351-5

Keywords

Mathematics Subject Classifications

Navigation