Skip to main content
Log in

Tilting Modules Arising from Ring Epimorphisms

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

We show that a tilting module T over a ring R admits an exact sequence 0 → R → T 0 → T 1 → 0 such that \(T_0,T_1\in\text{Add}(T)\) and Hom R (T 1,T 0) = 0 if and only if T has the form S ⊕ S/R for some injective ring epimorphism λ : R → S with the property that \(\text{Tor}_1^R(S,S)=0\) and pdS R  ≤ 1. We then study the case where λ is a universal localization in the sense of Schofield (1985). Using results by Crawley-Boevey (Proc Lond Math Soc (3) 62(3):490–508, 1991), we give applications to tame hereditary algebras and hereditary noetherian prime rings. In particular, we show that every tilting module over a Dedekind domain or over a classical maximal order arises from universal localization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angeleri Hügel, L., Herbera, D., Trlifaj, J.: Divisible modules and localization. J. Algebra 294(2), 519–551 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Angeleri Hügel, L., Herbera, D., Trlifaj, J.: Tilting modules and Gorenstein rings. Forum Math. 18(2), 211–229 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Angeleri Hügel, L., Krause, H., Happel, D. (eds.): Handbook of tilting theory. In: London Mathematical Society Lecture Notes Series, vol. 332. Cambridge University Press, Cambridge (2006)

  4. Angeleri Hügel, L., Tonolo, A., Trlifaj, J.: Tilting preenvelopes and cotilting precovers. Algebr. Represent. Theory 4(2), 155–170 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Auslander, M., Reiten, I., Smalø, S.O.: Representation theory of Artin algebras. In: Cambridge Studies in Advanced Mathematics, vol. 36. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  6. Bazzoni, S., Eklof, P.C., Trlifaj, J.: Tilting cotorsion pairs. Bull. Lond. Math. Soc. 37(5), 683–696 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bazzoni, S., Herbera, D.: One dimensional tilting modules are of finite type. Algebr. Represent. Theory 11(1), 43–61 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bergman, G.M., Dicks, W.: Universal derivations and universal ring constructions. Pac. J. Math. 79(2), 293–337 (1978)

    MathSciNet  Google Scholar 

  9. Berrick, A.J., Keating, M.E.: An introduction to rings and modules with K-theory in view. In: Cambridge Studies in Advanced Mathematics, vol. 65. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  10. Cohn, P.M.: Free rings and their relations, 2nd edn. In: London Mathematical Society Monographs, vol. 19. Academic [Harcourt Brace Jovanovich], London (1985)

    Google Scholar 

  11. Colpi, R., Trlifaj, J.: Tilting modules and tilting torsion theories. J. Algebra 178(2), 614–634 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Colpi, R., Tonolo, A., Trlifaj, J.: Perpendicular categories of infinite dimensional partial tilting modules and transfers of tilting torsion classes. J. Pure Appl. Algebra 211, 223–234 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Crawley-Boevey, W.W.: Regular modules for tame hereditary algebras. Proc. Lond. Math. Soc. (3) 62(3), 490–508 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dicks, W.: Mayer-Vietoris presentations over colimits of rings. Proc. Lond. Math. Soc. 34(3), 557–576 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  15. Eisenbud, D., Robson, J.C.: Modules over Dedekind prime rings. J. Algebra 16, 67–85 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fuchs, L., Salce, L.: Modules over valuation domains. In: Lecture Notes in Pure and Applied Mathematics, vol. 97. Marcel Dekker, New York (1985)

    Google Scholar 

  17. Gabriel, P., de la Peña, J.A.: Quotients of representation-finite algebras. Commun. Algebra 15(1–2), 279–307 (1987)

    Article  MATH  Google Scholar 

  18. Geigle, W., Lenzing, H.: Perpendicular categories with applications to representations and sheaves. J. Algebra 144(2), 273–343 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Göbel, R., Trlifaj, J.: Approximations and endomorphism algebras of modules. In: de Gruyter Expositions in Mathematics, vol. 41. Walter de Gruyter GmbH, Berlin (2006)

    Google Scholar 

  20. Goodearl, K.R.: Localization and splitting in hereditary noetherian prime rings. Pac. J. Math. 53, 137–151 (1974)

    MathSciNet  MATH  Google Scholar 

  21. Goodearl, K.R., Warfield, Jr., R.B.: An introduction to noncommutative Noetherian rings. In: London Mathematical Society Student Texts, vol. 16. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  22. Jategaonkar, A.V.: Localization in Noetherian rings. In: London Mathematical Society Lecture Note Series, vol. 98. Cambridge University Press, Cambridge (1986)

    Google Scholar 

  23. Keisler, H.J.: Ultraproducts and elementary classes. Nederl. Akad. Wetensch. Proc. Ser. A, 64 = Indag. Math. 23, 477–495 (1961)

    MathSciNet  Google Scholar 

  24. Kerner, O., Trlifaj, J.: Tilting classes over wild hereditary algebras. J. Algebra 290(2), 538–556 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Klingler, L., Levy, L.S.: Wild torsion modules over Weyl algebras and general torsion modules over HNPs. J. Algebra 172(2), 273–300 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kuzmanovich, J.: Localizations of HNP rings. Trans. Am. Math. Soc. 173, 137–157 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  27. Levy, L.S.: Modules over hereditary Noetherian prime rings (survey). In: Algebra and Its applications (Athens, OH, 1999). Contemp. Math., vol. 259, pp. 353–370. American Mathematical Society, Providence (2000)

    Google Scholar 

  28. Levy, L.S., Chris Robson, J.: Hereditary Noetherian prime rings. I. Integrality and simple modules. J. Algebra 218(2), 307–337 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lück, W.: Hilbert modules and modules over finite von Neumann algebras and applications to L 2-invariants. Math. Ann. 309(2), 247–285 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lukas, F.: Infinite-dimensional modules over wild hereditary algebras, J. Lond. Math. Soc. (2) 44(3), 401–419 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lukas, F.: A class of infinite-rank modules over tame hereditary algebras. J. Algebra 158(1), 18–30 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  32. Matlis, E.: 1-dimensional Cohen-Macaulay rings. In: Lecture Notes in Mathematics, vol. 327. Springer, Berlin (1973)

    Google Scholar 

  33. McConnell, J.C., Robson, J.C.: Noncommutative Noetherian rings. In: Pure and Applied Mathematics (New York). Wiley, Chichester (1987) (With the cooperation of L. W. Small, A Wiley-Interscience Publication)

  34. Neeman, A.: Noncommutative localisation in algebraic k-theory ii. Adv. Math. 213, 785–819 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Reiner, I.: Maximal Orders. London Mathematical Society Monographs, No. 5. Academic (A subsidiary of Harcourt Brace Jovanovich), London (1975)

  36. Reis, C.M., Viswanathan, T.M.: A compactness property for prime ideals in Noetherian rings. Proc. Am. Math. Soc. 25, 353–356 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ringel, C.M.: Tame algebras and integral quadratic forms. In: Lecture Notes in Mathematics, vol. 1099. Springer, Berlin (1984)

    Google Scholar 

  38. Salce, L.: Tilting modules over valuation domains. Forum Math. 16(4), 539–552 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Salce, L.: \(\mathfrak{F}\)-divisible modules and tilting modules over Prüfer domains. J. Pure Appl. Algebra 199(1–3), 245–259 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. Schofield, A.H.: Representation of rings over skew fields. In: London Mathematical Society Lecture Note Series, vol. 92. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  41. Schofield, A.H.: Universal localisation for hereditary rings and quivers. In: Ring Theory (Antwerp, 1985). Lecture Notes in Math., vol. 1197, pp. 149–164. Springer, Berlin (1986)

    Chapter  Google Scholar 

  42. Shelah, S.: Every two elementarily equivalent models have isomorphic ultrapowers. Isr. J. Math. 10, 224–233 (1971)

    Article  MATH  Google Scholar 

  43. Silver, L.: Noncommutative localizations and applications. J. Algebra 7, 44–76 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  44. Stenström, B.: Rings of quotients. In: Die Grundlehren der Mathematischen Wissenschaften, Band 217, An Introduction to Methods of Ring Theory. Springer, New York (1975)

  45. Trlifaj, J., Wallutis, S.L.: Corrigendum to: Tilting modules over small Dedekind domains (J. Pure Appl. Algebra 172(1), 109–117 (2002)). J. Pure Appl. Algebra 183(1–3), 329–331 (2003)

    MathSciNet  Google Scholar 

  46. Ziegler, M.: Model theory of modules. Ann. Pure Appl. Logic 26(2), 149–213 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidia Angeleri Hügel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angeleri Hügel, L., Sánchez, J. Tilting Modules Arising from Ring Epimorphisms. Algebr Represent Theor 14, 217–246 (2011). https://doi.org/10.1007/s10468-009-9186-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-009-9186-x

Keywords

Mathematics Subject Classifications (2000)

Navigation