Skip to main content
Log in

Piecewise Hereditary Nakayama Algebras

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

Let k be an algebraically closed field. Let Λ be the path algebra over k of the linearly oriented quiver \(\mathbb A_n\) for n ≥ 3. For r ≥ 2 and n > r we consider the finite dimensional k −algebra Λ(n,r) which is defined as the quotient algebra of Λ by the two sided ideal generated by all paths of length r. We will determine for which pairs (n,r) the algebra Λ(n,r) is piecewise hereditary, so the bounded derived category D b(Λ(n,r)) is equivalent to the bounded derived category of a hereditary abelian category \(\mathcal H\) as triangulated category.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auslander, M., Reiten, I., Smalø, S.: Representation Theory of Artin Algebras. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  2. Barot, M., Lenzing, H.: One-point extensions and derived equivalence. J. Algebra 264(1), 1–5 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Geigle, W., Lenzing, H.: A class of weighted projective curves arising in representation theory of finite-dimensional algebras. In: Singularities, Representation of Algebras, and Vector Bundles (Lambrecht, 1985). Lecture Notes in Math., vol. 1273, pp. 265–297. Springer, Berlin (1987)

    Chapter  Google Scholar 

  4. Happel D.: Triangulated categories in the representation theory of finite dimensional algebras. Lond. Math. Soc. Lect. Note Ser. 119 (1988)

  5. Happel, D.: A characterization of hereditary categories with tilting object. Invent. Math 144(2), 381–398 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Happel, D.: The Coxeter polynomial for a one point extension algebra. J. Algebra 321, 2028–2041 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Happel, D.: Hochschild cohomology of finite-dimensional algebras. In: Séminaire d’Alégbre Paul Dubreil et Marie-Paul Malliavin, 39me Année (Paris, 1987/1988). Lecture Notes in Math., vol. 1404, pp. 108–126. Springer, Berlin (1989)

    Chapter  Google Scholar 

  8. Happel, D.: Hochschild cohomology of piecewise hereditary algebras. Colloq. Math. 78(2), 261–266 (1998)

    MATH  MathSciNet  Google Scholar 

  9. Happel, D.: The trace of the Coxeter matrix and Hochschild cohomology. Linear Algebra Appl. 258, 169–177 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Happel, D., Zacharia, D.: A homological characterization of piecewise hereditary algebras. Math. Z. 260(1), 177–185 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Happel, D., Reiten, I., Smalø, S.: Piecewise hereditary algebras. Arch. Math. 66, 182–186 (1996)

    Article  MATH  Google Scholar 

  12. Happel, D., Rickard, J., Schofield, A.: Piecewise hereditary algebras. Bull. Lond. Math. Soc. 20(1), 23–28 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  13. Happel, D., Slungård, I.H.: On quasitilted algebras which are one-point extensions of hereditary algebras. Colloq. Math. 81(1), 141–152 (1999)

    MATH  MathSciNet  Google Scholar 

  14. Happel, D., Slungård, I.H.: One-point extensions of hereditary algebras. In: Algebras and Modules, II (Geiranger, 1996). CMS Conf. Proc., vol. 24, pp. 285–291. American Mathematical Society, Providence (1998)

    Google Scholar 

  15. Lenzing, H., de la Peña, J.A.: Wild canonical algebras. Math. Z. 224(3), 403–425 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lenzing, H., de la Peña, J.A.: Spectral Analysis of Finite Dimensional Algebras and Singularities. Trends in Representation Theory of Algebras and Related Topics, pp. 541–588. EMS, Zürich (2008)

    Google Scholar 

  17. Ringel, C.M.: Tame algebras and integral quadratic forms. In: Springer Lecture Notes in Mathematics 1099. Springer, Heidelberg (1984)

    Google Scholar 

  18. Rickard, J.: Morita theory for derived categories. J. Lond. Math. Soc. (2) 39(3), 436–456 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  19. Seidel, U.: On tilting complexes and piecewise hereditary algebras. Dissertation Technische Universität Chemnitz, Chemnitz (2003)

  20. Stekolshchik, R.: Notes on Coxeter Transformations and the McKay Correspondence. Springer Monographs in Mathematics. Springer, Berlin (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Happel.

Additional information

The results in this article are based on the doctoral thesis of the second author [19]. Some of the proofs have been modified and some recent developments have been taken into account. During a recent workshop in Bielefeld on the ADE Chain some interest was shown to make these results available to a wider audience.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Happel, D., Seidel, U. Piecewise Hereditary Nakayama Algebras. Algebr Represent Theor 13, 693–704 (2010). https://doi.org/10.1007/s10468-009-9169-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-009-9169-y

Keywords

Mathematics Subject Classifications (2000)

Navigation