Skip to main content
Log in

Tensoring with Infinite-Dimensional Modules in \(\mathcal {O}_0\)

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

We show that the principal block \(\mathcal {O}_0\) of the BGG category \(\mathcal {O}\) for a semisimple Lie algebra \(\frak g\) acts faithfully on itself via exact endofunctors which preserve tilting modules, via right exact endofunctors which preserve projective modules and via left exact endofunctors which preserve injective modules. The origin of all these functors is tensoring with arbitrary (not necessarily finite-dimensional) modules in the category \(\mathcal {O}\). We study such functors, describe their adjoints and show that they give rise to a natural (co)monad structure on \(\mathcal {O}_0\). Furthermore, all this generalises to parabolic subcategories of \(\mathcal {O}_0\). As an example, we present some explicit computations for the algebra \(\frak{sl}_3\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bass, H.: Algebraic K-theory. Benjamin, New York (1968)

    Google Scholar 

  2. Bernstein, J.N., Gelfand, S.I.: Tensor products of finite and infinite dimensional representations of semisimple Lie algebras. Compos. Math. 41(2), 245–285 (1980)

    MATH  MathSciNet  Google Scholar 

  3. Bernstein, J.N., Gelfand, I.M., Gelfand, S.I.: A certain category of \(\frak {g}\text{-modules}\). Funkcional. Anal. i Priložen. 10(2), 1–8 (1976)

    MathSciNet  Google Scholar 

  4. Fiebig, P.: Centers and translation functors for the category \(\mathcal {O}\) over Kac–Moody algebras. Math. Z. 243(4), 689–717 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Irving, R.S.: Projective modules in the category \(\mathcal {O}_S\): Self duality. Trans. Amer. Math. Soc. 291(2), 701–732 (1985)

    MathSciNet  Google Scholar 

  6. Jantzen, J.C.: Moduln mit einem Höchsten Gewicht. Lecture Notes in Mathematics, vol. 750. Springer-Verlag, Berlin (1979)

    MATH  Google Scholar 

  7. Lepowsky, J.: A generalization of the Bernstein-Gelfand-Gelfand resolution. J. Algebra 49, 496–511 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  8. Mac Lane, S.: Categories for the Working Mathematician. Springer, New York (1998)

    MATH  Google Scholar 

  9. Neidhardt, W.: A translation principle for Kac–Moody algebras. Proc. Amer. Math. Soc. 100(3), 395–400 (1987)

    MATH  MathSciNet  Google Scholar 

  10. Rocha-Caridi, A.: Splitting criteria for \(\frak {g}\text{-modules}\) induced from a parabolic and the Bernstein-Gelfand-Gelfand resolution of a finite dimensional, irreducible \(\frak {g}\text{-module}\). Trans. Amer. Math. Soc. 262(2), 335–366 (1980), December

    MATH  MathSciNet  Google Scholar 

  11. Rocha-Caridi, A., Wallach, N.R.: Projective modules over graded lie algebras. I. Math. Z. 180, 151–177 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ringel, C.M.: The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences. Math. Z. 208, 209–223 (1991)

    Article  MathSciNet  Google Scholar 

  13. Weibel, C.A.: An Introduction to Homological Algebra. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Kåhrström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kåhrström, J. Tensoring with Infinite-Dimensional Modules in \(\mathcal {O}_0\) . Algebr Represent Theor 13, 561–587 (2010). https://doi.org/10.1007/s10468-009-9137-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-009-9137-6

Keywords

Mathematics Subject Classifications (2000)

Navigation