Skip to main content
Log in

Multi-sample hypothesis testing of high-dimensional mean vectors under covariance heterogeneity

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we focus on the hypothesis testing problem of the mean vectors of high-dimensional data in the multi-sample case. We propose two maximum-type statistics and apply a parametric bootstrap technique to compute the critical values. Unlike previous hypothesis testing methods that heavily depend on the structural assumptions of the unknown covariance matrix, the proposed methods accommodate a general covariance structure. Additionally, we introduce screening-based testing procedures to enhance the power of our tests. These test procedures do not require the use of approximate limiting distributions for the test statistics. Finally, we obtain and verify the theoretical properties through simulation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2

Similar content being viewed by others

References

  • Aoshima, M., Yata, K. (2015). Asymptotic normality for inference on multisample, high-dimensional mean vectors under mild conditions. Methodology and Computing in Applied Probability, 17(2), 419–439.

    Article  MathSciNet  Google Scholar 

  • Bai, Z. D., Saranadasa, H. (1996). Effect of high dimension: by an example of a two sample problem. Statistica Sinica, 6(2), 311–329.

    MathSciNet  Google Scholar 

  • Borell, C. (1975). The Brunn-Minkowski inequality in gauss space. Inventiones Mathematicae, 30(2), 207–216.

    Article  MathSciNet  Google Scholar 

  • Cai, T. T., Xia, Y. (2014). High-dimensional sparse MANOVA. Journal of Multivariate Analysis, 131, 174–196.

    Article  MathSciNet  Google Scholar 

  • Chang, J. Y., Zheng, C., Zhou, W. X., Zhou, W. (2017). Simulation-based hypothesis testing of high dimensional means under covariance heterogeneity. Biometrics, 73(4), 1300–1310.

    Article  MathSciNet  Google Scholar 

  • Chen, S. X., Qin, Y. L. (2010). A two-sample test for high-dimensional data with applications to gene-set testing. The Annals of Statistics, 38(2), 808–835.

    Article  MathSciNet  Google Scholar 

  • Chernozhukov, V., Chetverikov, D., Kato, K. (2013). Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors. The Annals of Statistics, 41(6), 2786–2189.

    Article  MathSciNet  Google Scholar 

  • Chernozhukov, V., Chetverikov, D., Kato, K. (2015). Comparison and anti-concentration bounds for maxima of gaussian random vectors. Probability Theory and Related Fields, 162(1), 47–70.

    Article  MathSciNet  Google Scholar 

  • Hu, J., Bai, Z. D., Wang, C., Wang, W. (2017). On testing the equality of high dimensional mean vectors with unequal covariance matrices. Annals of the Institute of Statistical Mathematics, 69(2), 365–387.

    Article  MathSciNet  Google Scholar 

  • Huang, Y., Li, C. C., Li, R. Z., Yang, S. S. (2021). An overview of tests on high-dimensional means. Journal of Multivariate Analysis, 188, 104813.

    Article  MathSciNet  Google Scholar 

  • Kong, X. L., Harrar, S. W. (2021). High-dimensional MANOVA under weak conditions. Statistics, 55(2), 321–349.

    Article  MathSciNet  Google Scholar 

  • Pan, W., Shen, X. T. (2011). Adaptive tests for association analysis of rare variants. Genetic Epidemiology, 35(5), 381–388.

    Article  Google Scholar 

  • Runcie, D. E., Mukherjee, S. (2013). Dissecting high-dimensional phenotypes with Bayesian sparse factor analysis of genetic covariance matrices. Genetics, 194(3), 753–767.

    Article  Google Scholar 

  • Schott, J. R. (2007). Some high-dimensional tests for a one-way MANOVA. Journal of Multivariate Analysis, 98(9), 1825–1839.

    Article  MathSciNet  Google Scholar 

  • Srivastava, M. S. (2009). A test for the mean vector with fewer observations than the dimension under non-normality. Journal of Multivariate Analysis, 100(3), 518–532.

    Article  MathSciNet  Google Scholar 

  • Tony Cai, T., Liu, W., Xia, Y. (2014). Two-sample test of high dimensional means under dependence. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(2), 349–372.

    Article  MathSciNet  Google Scholar 

  • Wolen, A. R., Miles, M. F. (2012). Identifying gene networks underlying the neurobiology of ethanol and alcoholism. Erlbaum Alcohol Research: Current Reviews, 34(3), 306–317.

    Google Scholar 

  • Yamada, T., Himeno, T. (2015). Testing homogeneity of mean vectors under heteroscedasticity in high-dimension. Journal of Multivariate Analysis, 139, 7–27.

    Article  MathSciNet  Google Scholar 

  • Zhang, J. T., Xu, J. F. (2009). On the k-sample Behrens-Fisher problem for high-dimensional data. Science in China Series A: Mathematics, 52(6), 1285–1304.

    Article  MathSciNet  Google Scholar 

  • Zhong, P. S., Chen, S. X., Xu, M. Y. (2013). Tests alternative to higher criticism for high-dimensional means under sparsity and column-wise dependence. The Annals of Statistics, 41(6), 2820–2851.

    Article  MathSciNet  Google Scholar 

  • Zou, Q. H., Zhu, C. Z., Yang, Y. H., Zuo, X. N., Long, X. Y., Cao, Q. J., Wang, Y. F., Zang, Y. F. (2008). An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. Journal of Neuroscience Methods, 172(1), 137–141.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editor, the Associate Editor and two referees for their constructive comments. Jiang Hu was supported by National Natural Science Foundation of China (Grant Nos. 12171078, 12292980, 12292982) and Fundamental Research Funds for the Central Universities (Grant No. 2412023YQ003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A. Appendix

A. Appendix

In this section, we present the technical proofs of the results stated in Sect. 3. Before that, we give some auxiliary results for convenient use later.

Lemma 1

(Lemma 3.1 in Chernozhukov et al.(2013) \({\varvec{X}}\) and \({\varvec{Y}}\) are p-dimensional random vectors, we assume that \({\varvec{X}} \sim N\left( {\varvec{0}}, {\varvec{\varSigma }}_{1}\right) , {\varvec{Y}} \sim N\left( {\varvec{0}}, {\varvec{\varSigma }}_{2}\right)\) and there exist constants \(C_{1}>c_1>0\) such that for every \(1 \le l \le p\), \(c_{1} \le \sigma _{1, ll},\ \sigma _{2, ll} \le C_1\), where \(\sigma _{1, ll}=diag\left( {\varvec{\varSigma }}_1\right)\) and \(\sigma _{2, ll}=diag\left( {\varvec{\varSigma _2}}\right)\). Then, there exists a constant \(C'\) depending only on \(C_1\) and \(c_{1}\) such that

$$\begin{aligned} \sup _{x \in R} \left|P\left( \mathop {\max }\limits _{1 \le l \le p} X_{l} \le x\right) - P\left( \mathop {\max }\limits _{1 \le l \le p} Y_{l} \le x\right) \right|\le C' \varLambda ^{\frac{1}{3}} \left\{ 1\vee \log (p/\varLambda )\right\} ^{\frac{2}{3}}, \end{aligned}$$

where \(\varLambda =\left|{\varvec{\varSigma }}_{1}-{\varvec{\varSigma }}_{2}\right|_{\propto }.\)

Lemma 2

(Lemma 3 in Chang et al. 2017) Suppose that \(n_{i}\), \(p>2\) and \(\log (p) \le n_{i},\) \(\theta _{n_{i}, p}=pn^{1-\frac{r}{2}}_{i}, \nu _{ir}({\varvec{X}})=\mathop {\max }\limits _{1 \le l \le p}(E|D^{-1/2}_{i}X_{i1l}|^{r})^{1/r}, R_{i}=(r_{i,kl}), {\hat{R}}_{i}=({\hat{r}}_{i,kl}), {\hat{r}}_{i,kl}=\sum _{j=1}^{n_i}(X_{ijk}-{\bar{X}}_{ik})(X_{ijl}-{\bar{X}}_{il})/ \sqrt{\sum _{j=1}^{n_i}(X_{ijk}-{\bar{X}}_{ik})^{2}\sum _{j=1}^{n_i}(X_{ijl}-{\bar{X}}_{il})^{2}},\) for all \(i=1,\dots , K\) established.

(i) Assume that condition (A.1) holds. Then, there exist constants \(C_2, C_3>0\) independent of \(n_{i}\) and p such that, with a probability of at least \(1-C_2\left\{ n_{i}^{-1}+\theta ^{\frac{2}{(2+r)}}_{n_{i}, p}\right\}\),

$$\begin{aligned}&\max \left( \left|{\varvec{D}}^{-\frac{1}{2}}_i\hat{{\varvec{\varSigma }}}_i {\varvec{D}}_{i}^{-\frac{1}{2}} - {\varvec{R}}_{i} \right|_{\propto }, \left|\hat{{\varvec{R}}}_i-{\varvec{R}}_i\right|_{\propto } \right) \\&\le C_3 \left[ \nu ^{2}_{i4} n_{i}^{-\frac{1}{2}} \left\{ \log (pn_{i})\right\} ^{\frac{1}{2}}+\nu ^{2}_{ir} \theta ^{\frac{2}{(r+2)}}_{n_{i}, p}+\nu ^{2}_{ir} \theta ^{\frac{2}{r}}_{n_{i}, p} \log (p)\right] . \end{aligned}$$

(ii) Assume that condition (A.2) holds. Then, there exist constants \(C_4, C_5>0\) independent of \(n_{i}\) and p such that, with a probability of at least \(1-C_4 n^{-1}_{i},\)

$$\begin{aligned} \max \left( \left| {\varvec{D}}^{-\frac{1}{2}}_i\hat{{\varvec{\varSigma }}}_{i} {\varvec{D}}_{i}^{-\frac{1}{2}} - {\varvec{R}}_{i} \right| _{\propto }, \left| \hat{{\varvec{R}}}_i-{\varvec{R}}_i \right| _{\propto }\right) \le C_5 \left[ n_{i}^{-\frac{1}{2}} \left\{ \log (pn_{i})\right\} ^{\frac{1}{2}} +n_{i}^{-1} {\log (pn_{i})}^{\frac{2}{\gamma }}\right] . \end{aligned}$$

(iii) Assume that \(\nu _{i4}, i=1, \dots , K\) are uniformly bounded, then for \(0 <t \le {\sqrt{n}_{i}},\)

$$\begin{aligned} P\left\{ \sqrt{n}_{i} \left| \hat{{\varvec{D}}}^{-\frac{1}{2}}_i \left( \hat{{\varvec{\mu }}}_{i}-{\varvec{\mu }}_{i}\right) \right| _{\propto }\ge t\right\} \le Cp\exp (-ct^2) +n_{i}^{-1}, \end{aligned}$$

where \(\hat{{\varvec{D}}}_i=diag\left( {\hat{\sigma }}^2 _{i1},\dots , {\hat{\sigma }}^2 _{ip}\right) ,\ \hat{{\varvec{\mu }}}_{i}=\left( {\bar{X}}_{i1},\dots , {\bar{X}}_{ip}\right) '\) and \(C, c>0\) are constants independent of p.

The following states the auxiliary theory of the procedures for testing the equality of means, which is based on the idea of Gaussian approximation. \({\varvec{H}}_1, {\varvec{H}}_2, \dots , {\varvec{H}}_{N}\) are independent random vectors in \({\mathbb {R}}^{Kp}\), suppose each \({\varvec{H}}_i\) is centered and has a finite covariance matrix \(E\left[ {\varvec{H}}_i{\varvec{H}}_i'\right]\). Which \({\varvec{H}}_i=\left( H_{i1},\dots , H_{iKp}\right) ',\ {\varvec{B}}_{i}=diag\left( {E\left[ {\varvec{H}}_i{\varvec{H}}_i'\right] }\right) ,\) \(\sigma ^2_{il}=var(H_{il})=\sigma _{i, ll}\) and define

$$\begin{aligned} T_0:=\mathop {\max }\limits _{1\le l \le Kp} N^{-\frac{1}{2}}\sum _{i=1}^{N}\frac{H_{il}}{\sigma _{il}}. \end{aligned}$$

Let \({\varvec{G}}_1, \dots , {\varvec{G}}_N\) are a sequence of independent centered Gaussian random vectors in \({\mathbb {R}}^{Kp}\) such that each \({\varvec{G}}_i\) has the same covariance matrix as \({\varvec{H}}_i\) and \({\varvec{G}}_i \sim N\left( {\varvec{0}}, E\left[ {\varvec{H}}_i{\varvec{H}}_i'\right] \right)\). The following \(Z_0\) is the Gaussian analogue of \(T_0\) can be defined as

$$\begin{aligned} Z_0 :=\mathop {\max }\limits _{1 \le l \le Kp} N^{-\frac{1}{2}} \sum ^{N}_{i=1} \frac{G_{il}}{\sigma _{il}}. \end{aligned}$$

For \(l=1,\dots , Kp\) and \(r\ge 1,\) define the moments

$$\begin{aligned} \ M_r\left( {\varvec{H}}\right) :=\mathop {\max }\limits _{1 \le l \le Kp}\left( N^{-1}\sum _{i=1}^NE|V_{il}|^r\right) ^{1/r}, \end{aligned}$$

where \({\varvec{V}}_i={\varvec{V}}_{i}({\varvec{H}})=\left( V_{i1},\dots , V_{iKp}\right) '={\varvec{B}}_{i}^{-\frac{1}{2}}{\varvec{H}}_{i}\), \(i=1, \dots , N\). For \({0 \le t \le 1}\), set \(u\left( t\right) =\max \left( u_X\left( t\right) , u_G\left( t\right) \right)\), which is the maximum  \(\left( 1-t\right)\)-quantiles of \(\mathop {\max }\limits _{1 \le i \le N} |{\varvec{V}}_i |_{\propto }\) and \(\mathop {\max }\limits _{1 \le i \le N} \left|{\varvec{B}}_{i}^{-\frac{1}{2}}{\varvec{G}}_i \right|_{\propto }\), respectively.

Lemma 3

(Theorem 2.2 in Chernozhukov et al. 2013) Assume that \(\sigma _{i, ll}\) is bounded away from 0 and \(\propto\). Then, for any \(0 \le t \le 1\),

$$\begin{aligned}&\sup _{x \in R} \left|P\left( T_0 \le x\right) -P\left( Z_0 \le x\right) \right|\nonumber \\&\le C\left[ \left( M_3^{\frac{3}{4}} \vee M_4 ^{\frac{1}{2}}\right) N^{-\frac{1}{8}} \left\{ \log (KpN/t) \right\} ^{\frac{7}{8}} + u\left( t\right) N^{-\frac{1}{2}} \left\{ \log (KpN/t) \right\} ^{\frac{3}{2}}+t\right] , \end{aligned}$$
(5)

where \(C>0\) is a constant independent of Np and t.

Remark 2

The bound of (5) can be easily reduced under some conditions, respectively. According to Markov’s inequality, for \(u>0\),

$$\begin{aligned} P\left( \mathop {\max }\limits _{1 \le i \le N}\left|{\varvec{B}}_{i}^{-\frac{1}{2}}{\varvec{G}}_{i}\right|_{\propto }>u\right) \le 2KNp\left( 1-\varPhi \left( u\right) \right) \le u^{-1}\exp \left\{ \log \left( KpN\right) -u^2/2\right\} . \end{aligned}$$

Since

$$\begin{aligned} u_{G}\left( t\right) =\inf \left\{ u\ge 0:P\left( \mathop {\max }\limits _{1 \le i \le N}\left|{\varvec{B}}_{i}^{-\frac{1}{2}}{\varvec{G}}_{i}\right|_{\propto }>u\right) \le t\right\} , \end{aligned}$$

for \(0 \le t \le 1,\ u_{G}\left( t\right) \le \sqrt{2\log (KpN/t)}\). If \(\mathop {\max }\limits _{1 \le i \le N}\mathop {\max }\limits _{1 \le l \le Kp}\left\{ E(\left|V_{il}\right|^{r})\right\} ^{\frac{1}{r}} \le C^{'}_4\) for \(r \ge 4\) and \(C^{'}_{4}>0\) holds, according to Markov’s inequality, for all \(u>0\), let

$$\begin{aligned} \mu _{N, r}:=\left\{ E(\mathop {\max }\limits _{1 \le i \le N}|{\varvec{V}}_{i}|^{r}_{\propto })\right\} ^{\frac{1}{r}}, \end{aligned}$$

thus \(P\left( \mathop {\max }\limits _{1 \le i \le N}|{\varvec{V}}_{i}|_{\propto }>u\right) \le u^{-r}E\left( \mathop {\max }\limits _{1 \le i \le N}|{\varvec{V}}_{i}|^{r}_{\propto }\right) =u^{-r}\mu ^{r}_{N, r}.\) And since

$$\begin{aligned} u_{X}\left( t\right) :=\inf \left\{ u \ge 0:P\left( \mathop {\max }\limits _{1 \le i \le N}|{\varvec{V}}_{i}|_{\propto }\right) >u) \le t\right\} , \end{aligned}$$

hence \(u_{X}\left( t\right) \le t^{-\frac{1}{r}} \mu _{N, r}.\) By the inequality that

$$\begin{aligned} \mu _{N, r}=\left\{ E\left( \mathop {\max }\limits _{1 \le i \le N}\left|{\varvec{V}}_{i}\right|^{r}_{\propto }\right) \right\} ^{\frac{1}{r}} \le \left( KpN\right) ^{\frac{1}{r}} \mathop {\max }\limits _{1\le l \le Kp,1 \le i \le N}\left( E\left( \left|{\varvec{V}}_{il}\right|^{r}\right) \right) ^{\frac{1}{r}}. \end{aligned}$$

And taking \(t=\min \left\{ 1, \left[ \mu _{N, r}N^{-\frac{1}{2}}\left\{ \log \left( KpN\right) \right\} ^{\frac{3}{2}}\right] ^{\frac{r}{(r+1)}} \right\} ,\) the bound of (5) is

$$\begin{aligned} N^{-\frac{1}{8}}\left\{ \log \left( KpN\right) \right\} ^{\frac{7}{8}}+\theta ^{\frac{1}{(r+1)}}_{N, p}\left\{ \log \left( KpN\right) \right\} ^{\frac{3}{2}}. \end{aligned}$$
(6)

Moreover, if \(\mathop {\max }\limits _{1 \le i \le N}\mathop {\max }\limits _{1 \le l \le Kp}E(\exp (C^{'}_{5}\left|V_{il}\right|^{\gamma })) \le C^{'}_{6}\) for some \(C^{'}_{5}>0,\ C^{'}_{6}>1\) and \(0 < \gamma \le 2\) holds, then \(u_{X}(t) \le \left\{ \log \left\{ KpN/t\right\} \right\} ^{\frac{1}{\gamma }}.\) Let \(t=N^{-\frac{1}{2}},\) thus the bound of (5) is

$$\begin{aligned} N^{-\frac{1}{8}}\left\{ \log \left( KpN\right) \right\} ^{\frac{7}{8}}+N^{-\frac{1}{2}}\left\{ \log \left( KpN\right) \right\} ^{\frac{3}{2}+\frac{1}{\gamma }}, \end{aligned}$$
(7)

where \(\theta _{N, p}=KpN^{1-\frac{r}{2}}.\)

In the sequel, we give the proofs of Proposition 1 and Theorems 14. For simplicity, we only consider the three-sample case, i.e., \(K=3\), and the proofs are analogous when \(K >3\).

1.1 A. 1 Proof of Proposition 1

Because the non-studentized statistic \(T_{nsmax}\) can be handled similarly, we only provide the proof of the studentized statistic \(T_{smax}\) for the sake of clarity. To begin with, observe that for every \(x \in {\mathbb {R}}\), \(|x|= \max (-x, x)\). For \(t>0\) and the definition of \(T_{smax}\), the distribution of test statistic can be written as follows:

$$\begin{aligned}&P\left( T_{smax}>t\right) \\ =&P\Bigg (\mathop {\max }\limits _{1 \le l \le p} \Bigg (\frac{|{\bar{X}}_{1l} -{\bar{X}}_{2l}|}{\sqrt{{\hat{\sigma }}^2_{1l}/n_1+{\hat{\sigma }}^2_{2l}/n_2}}, \frac{|{\bar{X}}_{1l} -{\bar{X}}_{3l}|}{\sqrt{{\hat{\sigma }}^2_{1l}/n_1+{\hat{\sigma }}^2_{3l}/n_3}}, \frac{|{\bar{X}}_{2l} -{\bar{X}}_{3l}|}{\sqrt{{\hat{\sigma }}^2_{2l}/n_2+{\hat{\sigma }}^2_{3l}/n_3}}\Bigg ) \ge t\Bigg ) \\ =&P\Bigg (\mathop {\max }\limits _{1 \le l \le p} \Bigg (\max \Bigg (\frac{{\bar{X}}_{1l}-{\bar{X}}_{2l}}{\sqrt{{\hat{\sigma }}^2_{1l}/n_1+{\hat{\sigma }}^2_{2l}/n_2}}, -\frac{{\bar{X}}_{1l}-{\bar{X}}_{2l}}{\sqrt{{\hat{\sigma }}^2_{1k}/n_1+{\hat{\sigma }}^2_{2l}/n_2}}\Bigg ),\\ \;&~~~~~~\max \Bigg (\frac{{\bar{X}}_{1l}-{\bar{X}}_{3l}}{\sqrt{{\hat{\sigma }}^2_{1l}/n_1+{\hat{\sigma }}^2_{3l}/n_3}}, -\frac{{\bar{X}}_{1l}-{\bar{X}}_{3l}}{\sqrt{{\hat{\sigma }}^2_{2k}/n_2+{\hat{\sigma }}^2_{3l}/n_3}}\Bigg ), \\ \;&~~~~~~\max \Bigg (\frac{{\bar{X}}_{2l}-{\bar{X}}_{3l}}{\sqrt{{\hat{\sigma }}^2_{2l}/n_2+{\hat{\sigma }}^2_{3l}/n_3}}, -\frac{{\bar{X}}_{2l}-{\bar{X}}_{3l}}{\sqrt{{\hat{\sigma }}^2_{2l}/n_2+{\hat{\sigma }}^2_{3l}/n_3}}\Bigg )\Bigg )\ge t\Bigg ) . \end{aligned}$$

Establish a new set of dilated random vectors \({\varvec{X}}^{e}_{11}, \dots , {\varvec{X}}^{e}_{1n_1}, \ {\varvec{X}}^{e}_{21}, \dots , {\varvec{X}}^{e}_{2n_2},\ {\varvec{X}}^{e}_{31}, \dots , {{\varvec{X}}}^{e}_{3n_3}\) taking values in \({\mathbb {R}}^{2p}\), given by

$$\begin{aligned}&{\varvec{X}}^{e}_{1i}=\left( X^{e}_{1i1}, \dots , X^{e}_{1i2p}\right) '=\left( {\varvec{X}}'_{1i}, -{\varvec{X}}'_{1i}\right) ',\\&{\varvec{X}}^{e}_{2i}=\left( X^{e}_{2i1}, \dots , X^{e}_{2i2p}\right) '=\left( {\varvec{X}}'_{2i}, -{\varvec{X}}'_{2i}\right) ',\\&{\varvec{X}}^{e}_{3i}=\left( X^{e}_{3i1}, \dots , X^{e}_{3i2p}\right) '=\left( {\varvec{X}}'_{3i}, -{\varvec{X}}'_{3i}\right) '. \end{aligned}$$

From this point of view, we have \(P\left( T_{smax}>t\right) =P\left( T^{e}_{smax}>t\right) ,\) where

$$\begin{aligned}&{\bar{X}}_{1l}^{e} =n^{-1}_{1} \sum _{i=1}^{n_1}X^{e}_{1il},\quad \left( {\hat{\sigma }}^{e}_{1l}\right) ^2=n^{-1}_1 \sum _{i=1}^{n_1}(X^{e}_{1il}-{\bar{X}}^{e}_{1l})^2,\\ {}&T^{e}_{s1}=\mathop {\max }\limits _{1 \le l \le p}\frac{{\bar{X}}^{e}_{1l}-{\bar{X}}^{e}_{2l}}{\sqrt{({\hat{\sigma }}^{e}_{1l})^2/n_1+({\hat{\sigma }}^{e}_{2l})^2/n_2}};\\&{\bar{X}}_{2l}^{e} =n^{-1}_{2} \sum _{i=1}^{n_2}X^{e}_{2il},\quad \left( {\hat{\sigma }}^{e}_{2l}\right) ^2=n^{-1}_2 \sum _{i=1}^{n_2}\left( X^{e}_{2il}-{\bar{X}}^{e}_{2l}\right) ^2,\\ {}&T^{e}_{s2}=\mathop {\max }\limits _{1 \le l \le p}\frac{{\bar{X}}^{e}_{1l}-{\bar{X}}^{e}_{3l}}{\sqrt{\left( {{\hat{\sigma }}^{e}_{1l}}\right) ^2/n_{1}+\left( {\hat{\sigma }}^{e}_{3l}\right) ^2/n_3}};\\&{\bar{X}}_{3l}^{e} =n^{-1}_{3} \sum _{i=1}^{n_3}X^{e}_{3il},\quad \left( {\hat{\sigma }}^{e}_{3l}\right) ^2=n^{-1}_3 \sum _{i=1}^{n_3}(X^{e}_{3il}-{\bar{X}}^{e}_{3l})^2,\\ {}&T^{e}_{s3}=\mathop {\max }\limits _{1 \le l \le p}\frac{{\bar{X}}^{e}_{2l}-{\bar{X}}^{e}_{3l}}{\sqrt{\left( {\hat{\sigma }}^{e}_{2l}\right) ^2/n_2+({\hat{\sigma }}^{e}_{3l})^2/n_3}};\\&T^{e}_{smax}=\max (T^{e}_{s1},T^{e}_{s2},T^{e}_{s3}). \end{aligned}$$

Without loss of generality, we only need to focus on

$$\begin{aligned}&T^+_{smax}=\mathop {\max }\limits _{1\le l \le p}\left\{ \frac{{\bar{X}}_{1l}-{\bar{X}}_{2l}}{\left( {\hat{\sigma }}^2_{1l}/n_1+{\hat{\sigma }}^2_{2l}/n_2\right) ^{1/2}},\ \frac{{\bar{X}}_{1l}-{\bar{X}}_{3l}}{\left( {\hat{\sigma }}^2_{1l}/n_1+{\hat{\sigma }}^2_{3l}/n_3\right) ^{1/2}},\ \frac{{\bar{X}}_{2l}-{\bar{X}}_{3l}}{\left( {\hat{\sigma }}^2_{2l}/n_2+{\hat{\sigma }}^2_{3l}/n_3\right) ^{1/2}}\right\} . \end{aligned}$$

Let \(N=n_1+n_2+n_3\), denote by

$$\begin{aligned}&s^2_{1l}=\frac{n_1}{N}\left( \sigma ^{2}_{1l}+\frac{n_1}{n_2} \sigma ^{2}_{2l}\right) ,\ {\hat{s}}^2_{1l}=\frac{n_1}{N}\left( {\hat{\sigma }}^{2}_{1l}+\frac{n_1}{n_2} {\hat{\sigma }}^{2}_{2l}\right) ,\ l =1, \dots , p, \\&{\varvec{D}}_1=\begin{bmatrix} s^2_{11} &{} &{} \\ {} &{} \ddots &{} \\ {} &{} &{} s^2_{1p} \end{bmatrix}, \ \hat{{\varvec{D}}}_1=\begin{bmatrix} {\hat{s}}^2_{11} &{} &{} \\ {} &{} \ddots &{} \\ {} &{} &{} {\hat{s}}^2_{1p} \end{bmatrix}. \\&s^2_{2l}=\frac{n_1}{N}\left( \sigma ^{2}_{1l}+\frac{n_1}{n_3} \sigma ^{2}_{3l}\right) ,\ {\hat{s}}^2_{2l}=\frac{n_1}{N}\left( {\hat{\sigma }}^{2}_{1l}+\frac{n_1}{n_3} {\hat{\sigma }}^{2}_{3l}\right) ,\ l=1, \dots , p, \\&{\varvec{D}}_2=\begin{bmatrix} s^2_{21} &{} &{} \\ {} &{} \ddots &{} \\ {} &{} &{} s^2_{2p} \end{bmatrix},\ \hat{{\varvec{D}}}_2=\begin{bmatrix} {\hat{s}}^2_{21} &{} &{} \\ {} &{} \ddots &{} \\ {} &{} &{} {\hat{s}}^2_{2p} \end{bmatrix}. \\&s^2_{3l}=\frac{n_2}{N}\left( \sigma ^{2}_{2l}+\frac{n_2}{n_3} \sigma ^{2}_{3l}\right) ,\ {\hat{s}}^2_{3l}=\frac{n_2}{N}\left( {\hat{\sigma }}^{2}_{2l}+\frac{n_2}{n_3} {\hat{\sigma }}^{2}_{3l}\right) ,\ l=1, \dots , p, \\&{\varvec{D}}_3=\begin{bmatrix} s^2_{31} &{} &{} \\ {} &{} \ddots &{} \\ {} &{} &{} s^2_{3p} \end{bmatrix},\ \hat{{\varvec{D}}}_3=\begin{bmatrix} {\hat{s}}^2_{31} &{} &{} \\ {} &{} \ddots &{} \\ {} &{} &{} {\hat{s}}^2_{3p} \end{bmatrix}. \end{aligned}$$

And

$$\begin{aligned} {\varvec{D}}=\begin{bmatrix}{\varvec{D}}_1 &{} &{} \\ {} &{} {\varvec{D}}_2 &{}\\ {} &{} &{} {\varvec{D}}_3 \end{bmatrix},\ \hat{{\varvec{D}}}=\begin{bmatrix}\hat{{\varvec{D}}}_1 &{} &{} \\ {} &{} {\hat{{\varvec{D}}}_2} &{}\\ {} &{} &{} {\hat{{\varvec{D}}}_3} \end{bmatrix}. \end{aligned}$$

First, we define a pooled sequence of random vectors \(\left\{ {\varvec{\alpha }}_i=\left( \alpha _{i1}, \dots , \alpha _{i3p}\right) '\right\} _{i=1}^{N}\) as follows:

$$\begin{aligned}&\begin{aligned}&{\varvec{\alpha }}_{i}=\\&\left\{ \begin{array}{ll} \begin{bmatrix} {\varvec{I}}_{p \times p} \\ {\varvec{I}}_{p \times p} \\ {\varvec{0}}_{p \times p} \end{bmatrix} \begin{bmatrix} {\varvec{X}}_{1i}-{\varvec{\mu }}_1 \end{bmatrix}=\begin{bmatrix} {\varvec{X}}_{1i}-{\varvec{\mu }}_1 \\ {\varvec{X}}_{1i}-{\varvec{\mu }}_1\\ {{\varvec{0}}_{p}} \end{bmatrix}, &{} 1 \le i \le n_1; \\ \begin{bmatrix} -\frac{n_1}{n_2} {\varvec{I}}_{p\times p} \\ {\varvec{0}}_{p \times p} \\ {\varvec{I}}_{p \times p} \end{bmatrix} \begin{bmatrix} {\varvec{X}}_{2(i-n_1)}-{\varvec{\mu }}_2 \end{bmatrix}=\begin{bmatrix} - \frac{n_1}{n_2}\left( {\varvec{X}}_{2(i-n_1)}-{\varvec{\mu }}_2\right) \\ {{\varvec{0}}_{p}} \\ {\varvec{X}}_{2(i-n_1)}-{\varvec{\mu }}_2 \end{bmatrix}, &{} n_1+1 \le i \le n_1+n_2; \\ \begin{bmatrix} {\varvec{0}}_{p \times p}\\ -\frac{n_1}{n_2}{\varvec{I}}_{p \times p} \\ -\frac{n_2}{n_3}{\varvec{I}}_{p \times p}\end{bmatrix} \begin{bmatrix} {\varvec{X}}_{3(i-n_1-n_2)}-{\varvec{\mu }}_3 \end{bmatrix}=\begin{bmatrix} {{\varvec{0}}_{p}} \\ -\frac{n_1}{n_3} \left( {\varvec{X}}_{3(i-n_1-n_2)}-{\varvec{\mu }}_3 \right) \\ -\frac{n_2}{n_3}\left( {\varvec{X}}_{3(i-n_1-n_2)}-{\varvec{\mu }}_3\right) \end{bmatrix},&n_1+n_2+1 \le i \le n_1+n_2+n_3; \end{array} \right. \end{aligned} \end{aligned}$$
$$\begin{aligned}&\quad \tilde{{\varvec{\alpha }}}_{i}={\varvec{D}}^{-1/2} {\varvec{\alpha }}_{i},\ \hat{{\varvec{\alpha }}}_{i}=\hat{{\varvec{D}}}^{-1/2} {\varvec{\alpha }}_{i}. \end{aligned}$$

By the above notation and under the null hypothesis \({\varvec{H}}_0\), we have that

$$\begin{aligned}&T^{*}_{smax}=N^{-1/2}\mathop {\max }\limits _{1 \le l \le 3p}\sum \nolimits_{i=1}^{N}{\tilde{\alpha }}_{il}\\&=\mathop {\max }\limits _{1\le l \le p}\left\{ \frac{{\bar{X}}_{1l}-{\bar{X}}_{2l}}{\left( \sigma ^2_{1l}/n_1+\sigma ^2_{2l}/n_2\right) ^{1/2}},\ \frac{{\bar{X}}_{1l}-{\bar{X}}_{3l}}{\left( \sigma ^2_{1l}/n_1+\sigma ^2_{3l}/n_3\right) ^{1/2}},\ \frac{{\bar{X}}_{2l}-{\bar{X}}_{3l}}{\left( \sigma ^2_{2l}/n_2+\sigma ^2_{3l}/n_3\right) ^{1/2}}\right\} \\ \end{aligned}$$

and

$$\begin{aligned}&T^{+}_{smax}=N^{-1/2}\mathop {\max }\limits _{1 \le l \le 3p}\sum \nolimits_{i=1}^{N}{\hat{\alpha }}_{il}\\&=\mathop {\max }\limits _{1\le l \le p}\left\{ \frac{{\bar{X}}_{1l}-{\bar{X}}_{2l}}{\left( {\hat{\sigma }}^2_{1l}/n_1+{\hat{\sigma }}^2_{2l}/n_2\right) ^{1/2}},\ \frac{{\bar{X}}_{1l}-{\bar{X}}_{3l}}{\left( {\hat{\sigma }}^2_{1l}/n_1+{\hat{\sigma }}^2_{3l}/n_3\right) ^{1/2}},\ \frac{{\bar{X}}_{2l}-{\bar{X}}_{3l}}{\left( {\hat{\sigma }}^2_{2l}/n_2+{\hat{\sigma }}^2_{3l}/n_3\right) ^{1/2}}\right\} . \end{aligned}$$

Conditional on \(\{{\mathbf{\mathcal{X}}}_{1},\ {\mathbf{\mathcal{X}}}_{2},\ {\mathbf{\mathcal{X}}}_{3}\},\) the 3p-dimensional random vector \({\varvec{W}}_s=\left( W_{s1}, \dots , W_{s3p}\right) '\) is a centered Gaussian random vector with covariance matrix \(\tilde{{\varvec{R}}}_s\). Let

$$\begin{aligned} Z^{+}_{smax}=\mathop {\max }\limits _{1 \le l \le 3p} W_{sl}. \end{aligned}$$

We will demonstrate that the distribution of \(T^{+}_{smax}\) is sufficiently close to the conditional distribution of \(Z^+_{smax}\) given \(\{{\mathbf{\mathcal{X}}}_{1}, {\mathbf{\mathcal{X}}}_2, {\mathbf{\mathcal{X}}}_3\}\) with high probability. We define the following random vectors. When \(1 \le i \le n_1,\) let \({\varvec{g}}_i \sim N\left( {\varvec{0}}, {\varvec{\varSigma }}_1\right)\),

$$\begin{aligned} {\varvec{G}}_i=\begin{bmatrix} {\varvec{I}}_{p \times p}\\ {\varvec{I}}_{p \times p}\\ {\varvec{0}}_{p \times p} \end{bmatrix} {\left( {\varvec{g}}_i\right) } \text{ and } \tilde{{\varvec{G}}}_i={\varvec{D}}^{-1/2}{\varvec{G}}_i. \end{aligned}$$

When \(n_1+1 \le i \le n_1+n_2,\) let \({\varvec{g}}_i \sim N\left( {\varvec{0}}, {\varvec{\varSigma }}_2\right)\),

$$\begin{aligned} {\varvec{G}}_i=\begin{bmatrix} -\frac{n_1}{n_2}{\varvec{I}}_{p \times p}\\ {\varvec{0}}_{p \times p}\\ {\varvec{I}}_{p \times p} \end{bmatrix}{\varvec{g}}_i \text{ and } \tilde{{\varvec{G}}}_i={\varvec{D}}^{-1/2}{\varvec{G}}_i. \end{aligned}$$

When \(n_1+n_2+1 \le i \le n_1+n_2+n_3,\) let \({\varvec{g}}_{i} \sim N\left( {\varvec{0}}, {\varvec{\varSigma }}_{3}\right)\),

$$\begin{aligned} {\varvec{G}}_i=\begin{bmatrix} {\varvec{0}}_{p \times p}\\ \frac{n_1}{n_3} {\varvec{I}}_{p \times p}\\ - \frac{n_2}{n_3}{\varvec{I}}_{p \times p} \end{bmatrix} {\varvec{g}}_i \text{ and } \tilde{{\varvec{G}}}_i={\varvec{D}}^{-1/2}{\varvec{G}}_i. \end{aligned}$$

By the notation of \({\varvec{G}}_i\) and \(\tilde{{\varvec{R}}}_1\), we define

$$\begin{aligned} Z^*_{smax}=\mathop {\max }\limits _{1 \le l \le 3p}N^{-\frac{1}{2}} \sum \nolimits_{i=1}^{N}{\tilde{G}}_{il}. \end{aligned}$$

Note that \(Z^*_{smax}\) and \(T^*_{smax}\) are random variables. By Lemma 3, we have the following Berry–Esseen type bound

$$\begin{aligned} d=\sup _{x \in R} \left|P\left( T^*_{smax}\le x\right) -P\left( Z^*_{smax} \le x\right) \right|, \end{aligned}$$
(8)

where the order of d depends on the moment conditions imposed on \({\varvec{\alpha }}_i\) as described in (6) and (7). For the Gaussian maximum \(Z^*_{smax}\) and \(Z^+_{smax}\) given above, obtained from Lemma 1 to bound:

$$\begin{aligned} {\hat{d}}=\sup _{x \in R} |P\left( Z^*_{smax}\le x\right) -{P\left( Z^+_{smax} \le x|{\mathbf{\mathcal{X}}}_1, {\mathbf{\mathcal{X}}}_2, {\mathbf{\mathcal{X}}}_3\right) }|\le C\varTheta ^{\frac{1}{3}}_s \left\{ 1+{\log }({3p}/{\varTheta _s})\right\} ^{\frac{2}{3}}, \end{aligned}$$
(9)

where \(\varTheta _{s}=|{\tilde{R}}_s-R_{s}|_{\propto }.\) For \(0 < t_{12} \le \frac{1}{2}\), define the event

$$\begin{aligned} {\varvec{\varepsilon }}_{n_1, n_2}\left( t_{12}\right) =\left\{ \mathop {\max }\limits _{1 \le l \le p} \left|\frac{{\hat{\sigma }}^2_{\nu l}}{\sigma ^2_{\nu l}}-1\right|\le t_{12}, \nu =1, 2\right\} . \end{aligned}$$

On \({\varvec{\varepsilon }}_{n_1, n_2}\left( t_{12}\right) ,\) we have \(1-t_{12} \le \left( {\hat{s}}_{1l}/s_{1l}\right) ^2 \le 1+t_{12}\) for all \(l=1, \dots , p\). The inequality \(1+\frac{1}{2} \mu -\frac{1}{2} \mu ^2 \le \left( 1+\mu \right) ^{1/2} \le 1+\frac{1}{2} \mu\) holds for \(\mu \ge {-1},\) and thus, we can apply the inequality for \(0 < t_{12} \le 1/2\) to obtain that

$$\begin{aligned} {\varvec{\varepsilon }}_{n_1, n_2}(t_{12}) \subseteq {\varvec{A}}_{n_1, n_2}(t_{12})=\left\{ \mathop {\max }\limits _{1 \le l \le p} \left|\frac{{\hat{s}}_{1l}}{s_{1l}}-1\right|\le \frac{t_{12}\left( 1+t_{12}\right) }{2}\right\} . \end{aligned}$$

Similarly, we define the event

$$\begin{aligned} {\varvec{\varepsilon }}_{n_1, n_3}(t_{13})=\left\{ \mathop {\max }\limits _{1 \le l \le p} \left|\frac{{\hat{\sigma }}^2_{\nu l}}{\sigma ^2_{\nu l}}-1\right|\le t_{13},\ \nu =1, 3\right\} , \end{aligned}$$

and

$$\begin{aligned} {\varvec{\varepsilon }}_{n_2, n_3}\left( t_{23}\right) =\left\{ \mathop {\max }\limits _{1 \le l \le p} \left|\frac{{\hat{\sigma }}^2_{\nu l}}{\sigma ^2_{\nu l}}-1\right|\le t_{23}, \ \nu =2, 3\right\} . \end{aligned}$$

We have that

$$\begin{aligned} {\varvec{\varepsilon }}_{n_1, n_3}\left( t_{13}\right) \subseteq {\varvec{A}}_{n_{1}, n_{3}}\left( t_{13}\right) =\left\{ \mathop {\max }\limits _{1 \le l \le p} \left|{\hat{s}}_{2l}/s_{2l}-1\right|\le \frac{t_{13}(1+t_{13})}{2}\right\} \end{aligned}$$

and

$$\begin{aligned} {\varvec{\varepsilon }}_{n_2, n_3}({t_{23}}) \subseteq {\varvec{A}}_{n_{2}, n_{3}}\left( t_{23}\right) =\left\{ \mathop {\max }\limits _{1 \le l \le p} \left|{\hat{s}}_{3l}/s_{3l}-1\right|\le \frac{t_{23}(1+t_{23})}{2}\right\} . \end{aligned}$$

Apply Theorem 3 in Chernozhukov et al. (2015),

$$\begin{aligned} P\left( x-\varepsilon <Z^*_{smax} \le x\right) \le 4\varepsilon \left( 1+\left( 2\log \left( 3p\right) \right) ^{1/2}\right) :=\varDelta _{1}. \end{aligned}$$
(10)

Consequently, combination of inequalities (8) (9) (10) gives, for arbitrary \(x \in {\mathbb {R}}\) and \(\varepsilon >0\),

$$\begin{aligned} \begin{aligned} P\left( T^+_{smax}>x\right)&\le P\left( T^*_{smax}>x-\varepsilon \right) +P\left( \left( T^+_{smax}-T^*_{smax}\right)> \varepsilon \right) \\&\le \sup _{x \in R} \left| P\left( T^*_{smax}>x-\varepsilon \right) -P\left( Z^*_{smax}>x-\varepsilon \right) \right| \\&~~~~+P\left( Z^*_{smax}>x-\varepsilon \right) +P\left( T^+_{smax}-T^*_{smax}>\varepsilon \right) \\&\le d+\varDelta _1+P(Z^*_{smax}>x){+}P((T^+_{smax}-T^*_{smax})>\varepsilon )\\&\le d+\varDelta _1 + {\hat{d}}+P(Z^+_{smax}>x|{\mathbf{\mathcal{X}}}_{1}, {\mathbf{\mathcal{X}}}_{2}, {\mathbf{\mathcal{X}}}_{3})+P((T^+_{smax}-T^*_{smax})>\varepsilon ). \end{aligned} \end{aligned}$$
(11)

From the above inequalities, we can get the following conclusion

$$\begin{aligned}&P\left( T^+_{smax}>x\right) -P\left( Z^+_{smax}>x|{\mathbf{\mathcal{X}}}_{1},\ {\mathbf{\mathcal{X}}}_{2},\ {\mathbf{\mathcal{X}}}_{3}\right) \\ {}&\le d+{\hat{d}}+\varDelta _1+P\left( \left( T^+_{smax}-T^*_{smax}\right) >\varepsilon \right) . \end{aligned}$$

Similarly, we can get the inverse inequality as follows

$$\begin{aligned}&P\left( Z^+_{smax}>x\right) -P\left( T^+_{smax}>x|{\mathbf{\mathcal{X}}}_{1},\ {\mathbf{\mathcal{X}}}_{2},\ {\mathbf{\mathcal{X}}}_{3}\right) \le d+{\hat{d}}+\varDelta _1+P\left( \left( T^*_{smax}-T^+_{smax}\right) >\varepsilon \right) . \end{aligned}$$

Thus, we can obtain the following result. For every \(x \in {\mathbb {R}}\), we have that

$$\begin{aligned}&\sup _{x \in R}\left| P\left( T^+_{smax}>x\right) -P\left( Z^+_{smax}>x| {\mathbf{\mathcal{X}}}_{1}, \ {\mathbf{\mathcal{X}}}_{2},\ {\mathbf{\mathcal{X}}}_{3}\right) \right| \nonumber \\&\le \varDelta _1+d +{\hat{d}}+{\mathop {\max }\limits \left\{ P\left( \left( T^+_{smax}-T^*_{smax}\right)>\varepsilon \right) , P\left( \left( T^*_{smax}-T^+_{smax}\right) >\varepsilon \right) \right\} .} \end{aligned}$$
(12)

The next major task is to calculate the probability of

$$\begin{aligned} P\left( (T^+_{smax}-T^*_{smax})>\varepsilon \right) \hbox { ~ and~} P\left( (T^*_{smax}-T^+_{smax})>\varepsilon \right) . \end{aligned}$$

Under the null hypothesis, we know that

$$\begin{aligned}{} & {} \begin{aligned}&\left|\mathop {\max }\limits _{1 \le l \le p} \frac{\sqrt{n_1n_2}\left( {\bar{X}}_{1l}-{\bar{X}}_{2l}\right) }{\sqrt{n_2 {\hat{\sigma }}^2_{1l}+n_1 {\hat{\sigma }}^2_{2l}}}-\mathop {\max }\limits _{1 \le l \le p} \frac{\sqrt{n_1n_2}\left( {\bar{X}}_{1l}-{\bar{X}}_{2l}\right) }{\sqrt{n_2 \sigma ^2_{1l}+n_1 \sigma ^2_{2l}}} \right|\\&\le \mathop {\max }\limits _{1 \le l \le p} \left|{\hat{s}}_{1l}/s_{1l} -1 \right|\sqrt{n_1} \left|\hat{{\varvec{D}}}_{1, 2} \left( \hat{{\varvec{\mu }}}_1-\hat{{{\varvec{\mu }}}}_2\right) \right|_{\propto }, \end{aligned} \end{aligned}$$
(13)
$$\begin{aligned}{} & {} \begin{aligned}&\left|\mathop {\max }\limits _{1 \le l \le p} \frac{\sqrt{n_1n_3}({\bar{X}}_{1l}-{\bar{X}}_{3l})}{\sqrt{n_3 {\hat{\sigma }}^2_{1l}+n_1 {\hat{\sigma }}^2_{3l}}}-\mathop {\max }\limits _{1 \le l \le p} \frac{\sqrt{n_1n_3}({\bar{X}}_{1l}-{\bar{X}}_{3l})}{\sqrt{n_3 \sigma ^2_{1l}+n_1 \sigma ^2_{3l}}} \right|\\&\le \mathop {\max }\limits _{1 \le l \le p} \left|{\hat{s}}_{2l}/s_{2l} -1 \right|\sqrt{n_1} \left|\hat{{\varvec{D}}}_{1, 3} (\hat{{\varvec{\mu }}}_1-\hat{{\varvec{\mu }}}_3)\right|_{\propto }, \end{aligned} \end{aligned}$$
(14)
$$\begin{aligned}{} & {} \begin{aligned}&\left|\mathop {\max }\limits _{1 \le l \le p} \frac{\sqrt{n_2n_3}\left( {\bar{X}}_{2l}-{\bar{X}}_{3l}\right) }{\sqrt{n_3 {\hat{\sigma }}^2_{2l}+n_2 {\hat{\sigma }}^2_{3l}}}-\mathop {\max }\limits _{1 \le l \le p} \frac{\sqrt{n_2n_3}\left( {\bar{X}}_{2l}-{\bar{X}}_{3l}\right) }{\sqrt{n_3 \sigma ^2_{2l}+n_2 \sigma ^2_{3l}}} \right|\\&\le \mathop {\max }\limits _{1 \le l \le p} \left|{\hat{s}}_{3l}/s_{3l} -1 \right|\sqrt{n_2} \left|\hat{{\varvec{D}}}_{2, 3} \left( \hat{{\varvec{\mu }}}_2-\hat{{\varvec{\mu }}}_3\right) \right|_{\propto }, \end{aligned} \end{aligned}$$
(15)

where

$$\begin{aligned}&\hat{{\varvec{D}}}_{1, 2}=diag\left( \hat{{\varvec{\varSigma }}}_1+\frac{n_{1}}{n_{2}} \hat{{\varvec{\varSigma }}}_2\right) ,~~ \hat{{\varvec{D}}}_{2, 3}=diag\left( \hat{{\varvec{\varSigma }}}_2+\frac{n_{2}}{n_{3}} \hat{{\varvec{\varSigma }}}_3\right) ,~~ \hat{{\varvec{D}}}_{1, 3}=diag\left( \hat{{\varvec{\varSigma }}}_1+\frac{n_{1}}{n_{3}} \hat{{\varvec{\varSigma }}}_3\right) . \end{aligned}$$

By the above definitions, we obtain that

$$\begin{aligned} \begin{aligned}&P((T^+_{smax}-T^*_{smax})>\varepsilon ) \\&\le P\left( \mathop {\max }\limits _{1 \le l \le p} \frac{\sqrt{n_1n_2}\left( {\bar{X}}_{1l}-{\bar{X}}_{2l}\right) }{\sqrt{n_2 {\hat{\sigma }}^2_{1l}+n_1 {\hat{\sigma }}^2_{2l}}}-T^*_{smax}>\varepsilon , \mathop {\max }\limits _{1 \le l \le p} \frac{\sqrt{n_1n_3}\left( {\bar{X}}_{1l}-{\bar{X}}_{3l}\right) }{\sqrt{n_3 {\hat{\sigma }}^2_{1l}+n_1 {\hat{\sigma }}^2_{3l}}}-T^*_{smax}>\varepsilon , \right. \\&~~~~~~~~~\left. \mathop {\max }\limits _{1 \le l \le p} \frac{\sqrt{n_2n_3}\left( {\bar{X}}_{2l}-{\bar{X}}_{3l}\right) }{\sqrt{n_2 {\hat{\sigma }}^2_{3l}+n_3 {\hat{\sigma }}^2_{2l}}}-T^*_{smax}>\varepsilon \right) \\&\le P\left( \mathop {\max }\limits _{1 \le l \le p} \frac{\sqrt{n_1n_2}\left( {\bar{X}}_{1l}-{\bar{X}}_{2l}\right) }{\sqrt{n_2 {\hat{\sigma }}^2_{1l}+n_1 {\hat{\sigma }}^2_{2l}}}-T^*_{smax}>\varepsilon \right) +P\left( \mathop {\max }\limits _{1 \le l \le p} \frac{\sqrt{n_1n_3}\left( {\bar{X}}_{1l}-{\bar{X}}_{3l}\right) }{\sqrt{n_3 {\hat{\sigma }}^2_{1l}+n_1 {\hat{\sigma }}^2_{3l}}}-T^*_{smax}>\varepsilon \right) \\&~~~+P\left( \mathop {\max }\limits _{1 \le l \le p} \frac{\sqrt{n_2n_3}\left( {\bar{X}}_{2l}-{\bar{X}}_{3l}\right) }{\sqrt{n_3 {\hat{\sigma }}^2_{2l}+n_2 {\hat{\sigma }}^2_{3l}}}-T^*_{smax}>\varepsilon \right) \\&\le P\left( \left| \mathop {\max }\limits _{1 \le l \le p} \frac{\sqrt{n_1n_2}\left( {\bar{X}}_{1l}-{\bar{X}}_{2l}\right) }{\sqrt{n_2 {\hat{\sigma }}^2_{1l}+n_1 {\hat{\sigma }}^2_{2l}}}-\mathop {\max }\limits _{1 \le l \le p} \frac{\sqrt{n_1n_2}\left( {\bar{X}}_{1l}-{\bar{X}}_{2l}\right) }{\sqrt{n_2 \sigma ^2_{1l}+n_1 \sigma ^2_{2l}}}\right|>\varepsilon \right) \\&~+P\left( \left| \mathop {\max }\limits _{1 \le l \le p} \frac{\sqrt{n_1n_3}\left( {\bar{X}}_{1l}-{\bar{X}}_{3l}\right) }{\sqrt{n_3 {\hat{\sigma }}^2_{1l}+n_1 {\hat{\sigma }}^2_{3l}}}-\mathop {\max }\limits _{1 \le l \le p} \frac{\sqrt{n_1n_3}\left( {\bar{X}}_{1l}-{\bar{X}}_{3l}\right) }{\sqrt{n_3 \sigma ^2_{1l}+n_1 \sigma ^2_{3l}}}\right|>\varepsilon \right) \\&~+P\left( \left| \mathop {\max }\limits _{1 \le l \le p} \frac{\sqrt{n_2n_3}\left( {\bar{X}}_{2l}-{\bar{X}}_{3l}\right) }{\sqrt{n_3 {\hat{\sigma }}^2_{2l}+n_2 {\hat{\sigma }}^2_{3l}}}-\mathop {\max }\limits _{1 \le l \le p} \frac{\sqrt{n_2n_3}\left( {\bar{X}}_{2l}-{\bar{X}}_{3l}\right) }{\sqrt{n_3 \sigma ^2_{2l}+n_2 \sigma ^2_{3l}}}\right| >\varepsilon \right) . \end{aligned} \end{aligned}$$

Similarly, the following inequalities

$$\begin{aligned} \begin{aligned}&P((T^*_{smax}-T^+_{smax})>\varepsilon )\le P\left( \left| \mathop {\max }\limits _{1 \le l \le p} \frac{\sqrt{n_1n_2}\left( {\bar{X}}_{1l}-{\bar{X}}_{2l}\right) }{\sqrt{n_2 {\hat{\sigma }}^2_{1l}+n_1 {\hat{\sigma }}^2_{2l}}}-\mathop {\max }\limits _{1 \le l \le p} \frac{\sqrt{n_1n_2}\left( {\bar{X}}_{1l}-{\bar{X}}_{2l}\right) }{\sqrt{n_2 \sigma ^2_{1l}+n_1 \sigma ^2_{2l}}}\right|>\varepsilon \right) \\&\qquad ~~~~~~~~~~~~~~~~~~~~~~~~~~~~+P\left( \left| \mathop {\max }\limits _{1 \le l \le p} \frac{\sqrt{n_1n_3}\left( {\bar{X}}_{1l}-{\bar{X}}_{3l}\right) }{\sqrt{n_3 {\hat{\sigma }}^2_{1l}+n_1 {\hat{\sigma }}^2_{3l}}}-\mathop {\max }\limits _{1 \le l \le p} \frac{\sqrt{n_1n_3}\left( {\bar{X}}_{1l}-{\bar{X}}_{3l}\right) }{\sqrt{n_3 \sigma ^2_{1l}+n_1 \sigma ^2_{3l}}}\right|>\varepsilon \right) \\&\qquad ~~~~~~~~~~~~~~~~~~~~~~~~~~~~+P\left( \left| \mathop {\max }\limits _{1 \le l \le p} \frac{\sqrt{n_2n_3}\left( {\bar{X}}_{2l}-{\bar{X}}_{3l}\right) }{\sqrt{n_3 {\hat{\sigma }}^2_{2l}+n_2 {\hat{\sigma }}^2_{3l}}}-\mathop {\max }\limits _{1 \le l \le p} \frac{\sqrt{n_2n_3}\left( {\bar{X}}_{2l}-{\bar{X}}_{3l}\right) }{\sqrt{n_3 \sigma ^2_{2l}+n_2 \sigma ^2_{3l}}}\right| >\varepsilon \right) \end{aligned} \end{aligned}$$

can be obtained. Thus, \(P((T^+_{smax}-T^*_{smax})>\varepsilon )\) and \(P((T^*_{smax}-T^+_{smax})>\varepsilon )\) can be controlled by the same boundary. First, we consider the upper bounds of

$$\begin{aligned} P\left( \left| \mathop {\max }\limits _{1 \le l \le p} \frac{\sqrt{n_1n_2}\left( {\bar{X}}_{1l}-{\bar{X}}_{2l}\right) }{\sqrt{n_2 {\hat{\sigma }}^2_{1l}+n_1 {\hat{\sigma }}^2_{2l}}}-\mathop {\max }\limits _{1 \le l \le p} \frac{\sqrt{n_1n_2}\left( {\bar{X}}_{1l}-{\bar{X}}_{2l}\right) }{\sqrt{n_2 \sigma ^2_{1l}+n_1 \sigma ^2_{2l}}}\right| >\varepsilon \right) . \end{aligned}$$

It follows that

$$\begin{aligned}&{P\left( \left|\mathop {\max }\limits _{1 \le l \le p} \frac{\sqrt{n_1n_2}\left( {\bar{X}}_{1l}-{\bar{X}}_{2l}\right) }{\sqrt{n_2 {\hat{\sigma }}^2_{1l}+n_1 {\hat{\sigma }}^2_{2l}}}-\mathop {\max }\limits _{1 \le l \le p} \frac{\sqrt{n_1n_2}\left( {\bar{X}}_{1l}-{\bar{X}}_{2l}\right) }{\sqrt{n_2\sigma ^2_{1l}+n_1\sigma ^2_{2l}}} \right|\ge \varepsilon \right) } \nonumber \\&\le P\left( \left\{ \mathop {\max }\limits _{1 \le l \le p} \left|\frac{{\hat{s}}_{1l}}{s_{1l}}-1 \right|\sqrt{n_1} \left|\hat{{\varvec{D}}}^{-1/2}_{1, 2} \left( \hat{{\varvec{\mu }}}_1-\hat{{\varvec{\mu }}}_2\right) \right|_{\propto } \ge \varepsilon \right\} \bigcap \{ {\varvec{A}}_{n_1, n_2}(t_{12})\}\right) +P\left( \{ {\varvec{A}}^{c}_{n_1, n_2}(t_{12})\}\right) \nonumber \\&\le P\left( \mathop {\max }\limits _{1 \le l \le p} \sqrt{n_1} \left|\hat{{\varvec{D}}}^{-1/2}_{1, 2} \left( \hat{{\varvec{\mu }}}_{1}-\hat{{\varvec{\mu }}}_2\right) \right|_{\propto } \frac{t_{12}(1+t_{12})}{2} \ge \varepsilon \right) +P\left( {\varvec{A}}^{c}_{n_1, n_2}\left( t_{12}\right) \right) \nonumber \\&\le P\left( \mathop {\max }\limits _{1 \le l \le p} \sqrt{n_1} \left|\hat{{\varvec{D}}}^{-1/2}_{1, 2} \left( \hat{{\varvec{\mu }}}_{1}-\hat{{\varvec{\mu }}}_2\right) \right|_{\propto } \ge \frac{2 \varepsilon }{t_{12}(1+t_{12})}\right) +P\left( {\varvec{\varepsilon }}^{c}_{n_1, n_2}\left( t_{12}\right) \right) . \end{aligned}$$
(16)

By Lemma 2

$$\begin{aligned} P\left( \mathop {\max }\limits _{1 \le l \le p} \sqrt{n_1} \left|\hat{{\varvec{D}}}_{1, 2} \left( \hat{{\varvec{\mu }}}_{1}-\hat{{\varvec{\mu }}}_2\right) \right|_{\propto } \ge \frac{2 \varepsilon }{t_{12}(1+t_{12})}\right) \le cp\exp \left( -c \frac{4 \varepsilon ^2}{t_{12}^2(1+t_{12})^2}\right) +n_1^{-1}; \end{aligned}$$
(17)

and \(P\left( {\varvec{\varepsilon }}^{c}_{n_1, n_2}\left( t_{12}\right) \right) \le P\left( \mathop {\max }\limits _{1 \le l \le p} \left|\frac{{\hat{\sigma }}^2_{1\,l}}{\sigma ^2_{1\,l}}-1\right|> t_{12}\right) +P\left( \mathop {\max }\limits _{1 \le l \le p} \left|\frac{{\hat{\sigma }}^2_{2\,l}}{\sigma ^2_{2\,l}}-1\right|> t_{12}\right) .\) Let

$$\begin{aligned} t_{12}\asymp \max \Big \{&\nu ^2_{14} n_1^{-\frac{1}{2}} \left\{ \log (pn_1)\right\} ^{\frac{1}{2}} +\nu ^2_{1r} \theta ^{\frac{2}{r+2}}_{n_1, p}+\nu ^2_{1r} \theta ^{\frac{2}{r}} _{n_1, p} \log (p),\\&~\nu ^2_{24} n_2^{-\frac{1}{2}} \left\{ \log (pn_2)\right\} ^{\frac{1}{2}} +\nu ^2_{2r} \theta ^{\frac{2}{r+2}}_{n_2, p}+\nu ^2_{2r} \theta ^{\frac{2}{r}} _{n_2, p} \log (p)\Big \}, \end{aligned}$$

we can obtain that

$$\begin{aligned} P\left( {\varvec{\varepsilon }}^{c}_{n_1, n_2}\left( t_{12}\right) \right) \le c\{n_1^{-1}+\theta ^{\frac{2}{r+2}}_{n_1, p}\}+c\{n_2^{-1}+\theta ^{\frac{2}{r+2}}_{n_2, p}\}, \end{aligned}$$
(18)

where \(\theta _{n_1, p}=pn^{1-\frac{r}{2}}_1\) and \(\theta _{n_2, p}=pn^{1-\frac{r}{2}}_2.\) From (13), (16), (17) and (18), we have that

$$\begin{aligned} \begin{aligned}&{ P\left( \left| \mathop {\max }\limits _{1 \le l \le p} \frac{\sqrt{n_1n_2}\left( {\bar{X}}_{1l}-{\bar{X}}_{2l}\right) }{\sqrt{n_2 {\hat{\sigma }}^2_{1l}+n_1 {\hat{\sigma }}^2_{2l}}}-\mathop {\max }\limits _{1 \le l \le p} \frac{\sqrt{n_1n_2}\left( {\bar{X}}_{1l}-{\bar{X}}_{2l}\right) }{\sqrt{n_2\sigma ^2_{1l}+n_1\sigma ^2_{2l}}} \right| \ge \varepsilon \right) }\\&\le cp \exp \left( -c \frac{4 \varepsilon ^2}{t_{12}^2(1+t_{12})^2}\right) +n_{1}^{-1} +c\left\{ n_{1}^{-1}+\theta _{n_{1}, p}^{\frac{2}{r+2}} \right\} +c\left\{ n_{2}^{-1}+\theta _{n_{2}, p}^{\frac{2}{r+2}} \right\} . \end{aligned} \end{aligned}$$
(19)

The bounds of terms

$$\begin{aligned} \begin{aligned} P\left( \left| \mathop {\max }\limits _{1 \le l \le p} \frac{\sqrt{n_1n_3}\left( {\bar{X}}_{1l}-{\bar{X}}_{3l}\right) }{\sqrt{n_3 {\hat{\sigma }}^2_{1l}+n_1 {\hat{\sigma }}^2_{3l}}}-\mathop {\max }\limits _{1 \le l \le p} \frac{\sqrt{n_1n_3}\left( {\bar{X}}_{1l}-{\bar{X}}_{3l}\right) }{\sqrt{n_3\sigma ^2_{1l}+n_1\sigma ^2_{3l}}} \right| \ge \varepsilon \right) \end{aligned} \end{aligned}$$
(20)

and

$$\begin{aligned} \begin{aligned}&{P\left( \left| \mathop {\max }\limits _{1 \le l \le p} \frac{\sqrt{n_2n_3}\left( {\bar{X}}_{2l}-{\bar{X}}_{3l}\right) }{\sqrt{n_3 {\hat{\sigma }}^2_{2l}+n_2 {\hat{\sigma }}^2_{3l}}}-\mathop {\max }\limits _{1 \le l \le p} \frac{\sqrt{n_2n_3}\left( {\bar{X}}_{2l}-{\bar{X}}_{3l}\right) }{\sqrt{n_3\sigma ^2_{2l}+n_2\sigma ^2_{3l}}} \right| \ge \varepsilon \right) } \end{aligned} \end{aligned}$$
(21)

are analogous. Combining the results of the three parts, we obtain that

$$\begin{aligned} \begin{aligned} \max \{P((T^+_{smax}&-T^*_{smax})>\varepsilon ),P((T^*_{smax}-T^+_{smax})>\varepsilon )\}\\&\le Cp \exp \left( -c \frac{4 \varepsilon ^2}{t_{12}^2(1+t_{12})^2}\right) +n_{1}^{-1}+c\left\{ n_{1}^{-1}+\theta _{n_1, p}^{\frac{2}{r+2}}\right\} +c\left\{ n_{2}^{-1}+\theta _{n_2, p}^{\frac{2}{r+2}}\right\} \\&+Cp\exp \left( -c \frac{4 \varepsilon ^2}{t_{13}^2(1+t_{13})^2}\right) +n_{1}^{-1}+c\left\{ n_{1}^{-1}+\theta _{n_1, p}^{\frac{2}{r+2}}\right\} +c\left\{ n_{3}^{-1}+\theta _{n_3, p}^{\frac{2}{r+2} }\right\} \\&+Cp\exp \left( -c \frac{4 \varepsilon ^2}{t_{23}^2(1+t_{23})^2}\right) +n_{2}^{-1}+c\left\{ n_{2}^{-1}+\theta _{n_2, p}^{\frac{2}{r+2} }\right\} +c\left\{ n_{3}^{-1}+\theta _{n_3, p}^{\frac{2}{r+2} }\right\} . \end{aligned} \end{aligned}$$

Let \(t=\max \left( t_{12}, t_{13}, t_{23}\right)\), we then have that

$$\begin{aligned} \begin{aligned} \max \{P((T^+_{smax}&-T^*_{smax})>\varepsilon ),P((T^*_{smax}-T^+_{smax})>\varepsilon )\}\\ \le&Cp \exp \left( -c \frac{4 \varepsilon ^2}{t^2\left( 1+t\right) ^2}\right) +n_{1}^{-1}+c\left\{ n_{1}^{-1}+\theta _{n_1, p}^{\frac{2}{r+2}}\right\} +n_{1}^{-1}\\&+c\left\{ n_{2}^{-1}+\theta _{n_2, p}^{\frac{2}{(r+2)}}\right\} +n_{2}^{-1}+c\left\{ n_{3}^{-1}+\theta _{n_3, p}^{\frac{2}{r+2} }\right\} . \end{aligned} \end{aligned}$$
(22)

Let \(\varepsilon =ct\left( 1+t\right) \left\{ \log (pN)\right\} ^{\frac{1}{2}},\) thus

$$\begin{aligned} \varDelta _{1} \le 4c(1+t)\log \left( 3pN\right) . \end{aligned}$$

By Lemma 3, we can solve for the bound on d:

$$\begin{aligned} d \le C\left( N^{-\frac{1}{8}} \left\{ \log (3pN)\right\} ^{\frac{7}{8}}+\theta ^{\frac{1}{(r+1)}}_{N, p} \left\{ \log (3pN)\right\} ^{\frac{3}{2}}\right) , \end{aligned}$$

where \(N=n_1+n_2+n_3,\ \theta _{N, p}=pN^{1-\frac{r}{2}}.\) Substituting the above result into (12) gives the result of Proposition 1 (i). Under condition (A.2), the proof is similar, and thus, it is omitted. \(\square\)

1.2 A.2 Proof of Theorem 1

The proof of the case of non-studentized test is similar to studentized, and thus, we only give proof of the test based on studentized statistic. Recall that

$$\begin{aligned} c_{s, \alpha } =\inf \left\{ t\in {\mathbb {R}} :P\left( \left|{\varvec{W}}_{s}\right|_{\propto }\ge t|{\mathbf{\mathcal{X}}}_1, \dots , {\mathbf{\mathcal{X}}}_K\right) \le \alpha \right\} , \end{aligned}$$

then it follows from Proposition 1 and Lemma 2 that, under (A.1) or (A.2)

$$\begin{aligned} |P_{{\varvec{H}}_0}\left( T_{smax}> c_{s,\alpha }\right) -P\left\{ |{\varvec{W}}_s|_{\propto } >c_{s, \alpha }|{\mathbf{\mathcal{X}}}_{1},\ {\mathbf{\mathcal{X}}}_{2},\ {\mathbf{\mathcal{X}}}_{3}\right\} |{\mathop {\rightarrow }\limits ^{p}} 0, \end{aligned}$$

as \(N \rightarrow \infty \) According to Theorem 3 in Chernozhukov et al. (2015), we know the following inequalities hold

$$\begin{aligned} \alpha&\ge P\left( |{\varvec{W}}_s|_{\propto }>c_{s, \alpha }|{\mathbf{\mathcal{X}}}_{1},\ {\mathbf{\mathcal{X}}}_{2},\ {\mathbf{\mathcal{X}}}_{3}\right) \end{aligned}$$

and

$$\begin{aligned}&P\left( |{\varvec{W}}_s|_{\propto }>c_{s, \alpha }|{\mathbf{\mathcal{X}}}_{1},\ {\mathbf{\mathcal{X}}}_{2},\ {\mathbf{\mathcal{X}}}_{3}\right) \\&\ge P\left( |{\varvec{W}}_s|_{\propto }>c_{s, \alpha }-N^{-1}|{\mathbf{\mathcal{X}}}_{1},\ {\mathbf{\mathcal{X}}}_{2},\ {\mathbf{\mathcal{X}}}_{3}\right) -P\left( c_{s, \alpha }-N^{-1} \le |{\varvec{W}}_s|\le c_{s, \alpha }|{\mathbf{\mathcal{X}}}_{1},\ {\mathbf{\mathcal{X}}}_{2},\ {\mathbf{\mathcal{X}}}_{3}\right)&\\&\ge \alpha -CN^{-1}\left\{ \log (3p)\right\} ^{\frac{1}{2}}. \end{aligned}$$

Thus, we have that

$$\begin{aligned} \lim _{n_1,n_2, n_3,p\rightarrow \infty } P_{{\varvec{H}}_0}\left( T_{smax} >c_{s, \alpha }\right) = \alpha , \end{aligned}$$

which completes the proof of Theorem 1. \(\square\)

1.3 A.3 Proof of Theorem 2

For the statistic \(T_{nsmax}\), the proof is similar, thus, we only give the proof of the test based on \(T_{smax}\). Recall that for \(1\le i<j\le 3,\)

$$\begin{aligned}&T_{smax}=\begin{bmatrix} \hat{{\varvec{D}}}_{12}\sqrt{n_1n_2}\left( \bar{{\varvec{X}}}_1-\bar{{\varvec{X}}}_2\right) \\ \hat{{\varvec{D}}}_{13}\sqrt{n_1n_3}\left( \bar{{\varvec{X}}}_1-\bar{{\varvec{X}}}_3\right) \\ \hat{{\varvec{D}}}_{23}\sqrt{n_2n_3}\left( \bar{{\varvec{X}}}_2-\bar{{\varvec{X}}}_3\right) \end{bmatrix}_{\propto },~~{\varvec{\varepsilon }}_{n_i, n_j}\left( t_{ij}\right) =\left\{ \mathop {\max }\limits _{1 \le l \le p} |\frac{{\hat{\sigma }}^2_{\nu l}}{\sigma ^2_{\nu l}}-1|\le t_{ij}, \ \nu =i, j\right\} . \end{aligned}$$

Let \({\varvec{W}}_s|{\mathbf{\mathcal{X}}}_1, {\mathbf{\mathcal{X}}}_2, {\mathbf{\mathcal{X}}}_3 \sim N\left( {\varvec{0}}, \tilde{{\varvec{R}}}_s\right)\), Borell (1975) showed that for every \(u>0,\)

$$\begin{aligned} P\left\{ |{\varvec{W}}_s|_{\propto } \ge E\left( |{\varvec{W}}_s|_{\propto }|{\mathbf{\mathcal{X}}}_{1},\ {\mathbf{\mathcal{X}}}_{2},\ {\mathbf{\mathcal{X}}}_{3}\right) +u |{\mathbf{\mathcal{X}}}_{1},\ {\mathbf{\mathcal{X}}}_{2},\ {\mathbf{\mathcal{X}}}_{3}\right\} \le \exp \left( -\frac{u^2}{2}\right) . \end{aligned}$$
(23)

From the properties of the distribution of \(|{\varvec{W}}_{s}|_{\propto }\), the following inequalities hold

$$\begin{aligned} E\left( |{\varvec{W}}_s|_{\propto }|{\mathbf{\mathcal{X}}}_{1},\ {\mathbf{\mathcal{X}}}_{2},\ {\mathbf{\mathcal{X}}}_{3}\right) \le (1+\left\{ 2\log (3p)\right\} ^{-1})\left\{ 2\log (3p)\right\} ^{\frac{1}{2}}, \end{aligned}$$

which implies

$$\begin{aligned} c_{s, \alpha } \le [1+\left\{ 2\log (3p)\right\} ^{-1}]\sqrt{2\log \left( 3p\right) }+\sqrt{2\log (1/\alpha )}. \end{aligned}$$
(24)

Thus the following inequalities hold:

$$\begin{aligned}&P(T_{smax} \ge c_{s, \alpha })\ge P(T^{+}_{smax}>c_{s, \alpha })\nonumber \\&\ge P\left( T^+_{smax}>\left( 1+\{2\log \left( 3p\right) \}^{-\frac{1}{4}}+\{2\log \left( 3p\right) \}^{-\frac{1}{2}}\right) \eta (p, \alpha ),\right. \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad ~~~~~~~~~~~~{\varvec{\varepsilon }}_{n_1, n_2}(t_{12}), {\varvec{\varepsilon }}_{n_1, n_3}\left( t_{13}\right) , {\varvec{\varepsilon }}_{n_2, n_3}\left( t_{23}\right) \Big )\nonumber \\&\ge 1-P\left( T^+_{smax}\le \left( 1+\{2\log \left( 3p\right) \}^{-\frac{1}{4}}+\{2\log \left( 3p\right) \}^{-\frac{1}{2}}\right) \eta (p, \alpha )\right) -P\left( {\varvec{\varepsilon }}^{c}_{n_1, n_2}\left( t_{12}\right) \right) \nonumber \\&\qquad -P\left( {\varvec{\varepsilon }}^{c}_{n_1, n_3}\left( t_{13}\right) \right) -P\left( {\varvec{\varepsilon }}^{c}_{n_2, n_3}\left( t_{23}\right) \right) \nonumber \\&\ge 1-P\left( \mathop {\max }\limits _{1 \le l \le p} \frac{ \sqrt{n_1n_2}|{\bar{X}}_{1l}-{\bar{X}}_{2l}|}{n_2{\hat{\sigma }}^2_{1l}+n_1{\hat{\sigma }}^2_{2l}} \le \left( 1+\left\{ 2\log (3p)\right\} ^{-\frac{1}{4}}+\left\{ 2\log \left( 3p\right) \right\} ^{-\frac{1}{2}}\right) \eta (p, \alpha )\right) \nonumber \\&~~~~~-P\left( \mathop {\max }\limits _{1 \le l \le p} \frac{\sqrt{n_1n_3}|{\bar{X}}_{1l}-{\bar{X}}_{3l}|}{n_3{\hat{\sigma }}^2_{1l}+n_1{\hat{\sigma }}^2_{3l}} \le \left( 1+\left\{ 2\log \left( 3p\right) \right\} ^{-\frac{1}{4}}+\{2\log (3p)\}^{-\frac{1}{2}}\right) \eta (p, \alpha )\right) \nonumber \\&~~~~~-P\left( \mathop {\max }\limits _{1 \le l \le p} \frac{ \sqrt{n_2n_3}|{\bar{X}}_{2l}-{\bar{X}}_{3l}|}{n_3{\hat{\sigma }}^2_{2l}+n_2{\hat{\sigma }}^2_{3l}} \le (1+\{2\log (3p)\}^{-\frac{1}{4}}+\{2\log (3p)\}^{-\frac{1}{2}})\eta (p, \alpha )\right) \nonumber \\&~~~~~-P\left( {\varvec{\varepsilon }}^c_{n_1, n_2}\left( t_{12}\right) \right) -P\left( {\varvec{\varepsilon }}^c_{n_1, n_3}\left( t_{13}\right) \right) -P\left( {\varvec{\varepsilon }}^c_{n_2, n_3}\left( t_{23}\right) \right) . \end{aligned}$$
(25)

Define the following equations

$$\begin{aligned} \begin{aligned}&L_{ij}={\underset{1 \le l \le p}{{\arg \max }}}\ \sigma ^{-1}_{lij}|\mu _{il}-\mu _{jl}|,\ \sigma ^2_{lij}=\frac{\sigma ^2_{il}}{n_i}+\frac{\sigma ^2_{jl}}{n_j},\ {\hat{\sigma }}^2_{lij}=\frac{{\hat{\sigma }}^2_{il}}{n_i}+\frac{{\hat{\sigma }}^2_{jl}}{n_j}, 1\le i<j\le 3. \end{aligned} \end{aligned}$$

For \(1\le i<j\le 3\), \(0 < t_{ij} \le \frac{1}{2}\), assume without loss of generality that \(\mu _{iL_{ij}}-\mu _{jL_{ij}}>0,\) then on the event \({\varvec{\varepsilon }}_{n_i, n_j}\left( t_{ij}\right) ,\)

$$\begin{aligned} \begin{aligned}&\mathop {\max }\limits _{1 \le l \le p} \frac{\sqrt{n_in_j}|{\bar{X}}_{il}-{\bar{X}}_{jl}|}{\left( n_j{\hat{\sigma }}^2_{il}+n_i{\hat{\sigma }}^2_{jl}\right) ^{\frac{1}{2}}} \ge \frac{\left( {\bar{X}}_{iL_{ij}}-\mu _{iL_{ij}}\right) -\left( {\bar{X}}_{jL_{ij}}-\mu _{jL_{ij}}\right) }{{\hat{\sigma }}_{L_{ij}{ij}}} +\frac{\mu _{iL_{ij}}-\mu _{jL_{ij}}}{{\hat{\sigma }}_{L_{ij}{ij}}}&\\&~~~~~~~~\ge \frac{\left( {\bar{X}}_{iL_{ij}}-\mu _{iL_{ij}}\right) -\left( {\bar{X}}_{jL_{ij}}-\mu _{jL_{ij}}\right) }{{\hat{\sigma }}_{L_{ij}{ij}}} +\left( 1+\frac{1}{2}t_{ij}\right) ^{-1}{\frac{\mu _{iL_{ij}}-\mu _{jL_{ij}}}{\sigma _{L_{ij}{ij}}}}.&\end{aligned} \end{aligned}$$

Combining the above inequalities, let \((1+\{2\log (3p)\}^{-\frac{1}{4}}+\{2\log (3p)\}^{-\frac{1}{2}} )\eta (p, \alpha ))=C_{p, \eta }\), we have that

$$\begin{aligned}&(25)\ge 1-P(\frac{\left( {\bar{X}}_{1L_{12}}-\mu _{1L_{12}}\right) -\left( {\bar{X}}_{2L_{12}}-\mu _{2 L_{12}}\right) }{{\hat{\sigma }}_{L_{12} 12}} +\left( 1+ {t_{12}/2}\right) ^{-1}\frac{\mu _{1L_{12}}-\mu _{2L_{12}}}{{\sigma _{L_{12}{12}}}} \le C_{p, \eta })\nonumber \\&-P(\frac{\left( {\bar{X}}_{1L_{13}}-\mu _{1L_{13}}\right) -\left( {\bar{X}}_{3 L_{13}}-\mu _{3L_{13}}\right) }{{\hat{\sigma }}_{L_{13} {13}}} +\left( 1+{t_{13}/2}\right) ^{-1}\frac{\mu _{1L_{13}}-\mu _{3L_{13}}}{{\sigma _{L_{13}{13}}}} \le C_{p, \eta })\nonumber \\&-P(\frac{\left( {\bar{X}}_{2 L_{23}}-\mu _{2L_{23}}\right) -\left( {\bar{X}}_{3L_{23}}- \mu _{3L_{23}}\right) }{{\hat{\sigma }}_{L_{23} {23}}} +\left( 1+{t_{23}/2}\right) ^{-1}\frac{\mu _{2L_{23}}- \mu _{3L_{23}}}{{\sigma _{L_{23} {23}}}} \le C_{p, \eta })\nonumber \\&-P\left( {\varvec{\varepsilon }}^{c}_{n_1, n_2}\left( t_{12}\right) \right) -P\left( {\varvec{\varepsilon }}^{c}_{n_1, n_3}\left( t_{13}\right) \right) -P\left( {\varvec{\varepsilon }}^{c}_{n_2, n_3}\left( t_{23}\right) \right) . \end{aligned}$$
(26)

Furthermore, we choose \(u_{12}=u_{12, n, p},\ u_{13}=u_{13, n, p},\ u_{23}=u_{23, n, p}\) such that

$$\begin{aligned}&1+\xi _{n}=\left( 1+{t_{ij}/2}\right) \left( 1+\{2\log \left( 3p\right) \}^{-\frac{1}{4}}+\left\{ 2\log (3p)\right\} ^ {-\frac{1}{2}}+u_{ij}\right) ,1\le i<j \le 3. \end{aligned}$$

For \(\xi _{n}>0\) such that \(\xi _{n} \rightarrow 0\) and \(\xi _{n}\sqrt{\log \left( 3p\right) } \rightarrow \infty\), \(1\le i<j\le 3\), we have that

$$\begin{aligned} \frac{\mathop {\max }\limits _{1 \le l \le p} |\mu _{il}-\mu _{jl}|}{\left( \sigma ^2_{il}/n_i+\sigma ^2_{jl}/n_j\right) ^{\frac{1}{2}}}\ge \left( 1+{t_{ij}/2}\right) \left( 1+\{2\log \left( 3p\right) \}^{-\frac{1}{2}}+\{2\log \left( 3p\right) \}^{-\frac{1}{4}} +u_{ij}\right) \eta (p, \alpha ). \end{aligned}$$

By Lemma 2, the following inequalities are obtained to deduce (26)

$$\begin{aligned}&P\left( {\varvec{\varepsilon }}^{c}_{n_1, n_2}\right) \left( t_{12}\right) +P\left( {\varvec{\varepsilon }}^{c}_{n_1, n_3}\right) \left( t_{13}\right) +P\left( {\varvec{\varepsilon }}^{c}_{n_2, n_3}\right) \left( t_{23}\right) \\&\le c\left\{ n_1^{-1}+\theta ^{\frac{2}{r+2}}_{n_1, p}\right\} +c\left\{ n_2^{-1}+\theta ^{\frac{2}{r+2}}_{n_2, p}\right\} +c\left\{ n_3^{-1}+\theta ^{\frac{2}{r+2}}_{n_3, p}\right\} , \end{aligned}$$

where

$$\begin{aligned}&t_{ij}\asymp \max \Big \{\nu ^2_{i4} n_i^{-\frac{1}{2}} \left\{ \log (pn_i)\right\} ^{\frac{1}{2}} +\nu ^2_{ir} \theta ^{\frac{2}{r+2}}_{n_i, p}+\nu ^2_{ir} \theta ^{\frac{2}{r}} _{n_i, p} \log (p),\\&\nu ^2_{j4} n_j^{-\frac{1}{2}} \left\{ \log (pn_j)\right\} ^{\frac{1}{2}} +\nu ^2_{jr}, \theta ^{\frac{2}{r+2}}_{n_j, p}+\nu ^2_{jr} \theta ^{\frac{2}{r}} _{n_j, p} \log (p)\Big \}, 1\le i<j\le 3; \end{aligned}$$

and under condition (A.1) with \(p=O\left( n^{\frac{r}{2}-1}N^{-\delta }\right) ,\) thus \(p=O\left( n_{i}^{\frac{r}{2}-1-\delta }\right) , i=1, 2, 3,\) we can get \(\theta _{n_1, p}=O\left( n_1^{-\delta }\right) ,\ \theta _{n_2, p}=O\left( n_2^{-\delta }\right) ,\ \theta _{n_3, p}=O\left( n_3^{-\delta }\right)\). Under these conditions, for \(1\le i<j \le 3\), let \(t_{ij}\asymp \left\{ n_i^{-\frac{2\delta }{\left( r+2\right) }}, n_j^{-\frac{2\delta }{(r+2)}}\right\} ,\) we have that

$$\begin{aligned}&P\left( {\varvec{\varepsilon }}_{n_i, n_j}^c\left( t_{ij}\right) \right) \le C\left\{ n_i^{-1}+n_i^{-\frac{2\delta }{(r+2)}}\right\} +C\left\{ n_j^{-1}+n_j^{-\frac{2\delta }{(r+2)}}\right\} . \end{aligned}$$

Summing up the above equations, we have the following inequalities

$$\begin{aligned} (26) \ge 1&-P\left( \frac{\left( {\bar{X}}_{1L_{12}}-\mu _{1L_{12}}\right) -\left( {\bar{X}}_{2L_{12}}-\mu _{2L_{12}}\right) }{{\hat{\sigma }}_{L_{12}{12}}} \le -u_{12} \eta (p, \alpha )\right) \\&-P\left( \frac{\left( {\bar{X}}_{1L_{13}}-\mu _{1L_{13}}\right) -\left( {\bar{X}}_{3L_{13}}-\mu _{3L_{13}}\right) }{{\hat{\sigma }}_{L_{13}{13}}} \le -u_{13} \eta (p, \alpha )\right) \\&-P\left( \frac{\left( {\bar{X}}_{2L_{23}}-\mu _{2L_{23}}\right) -\left( {\bar{X}}_{3L_{23}}-\mu _{3L_{23}}\right) }{{\hat{\sigma }}_{L_{23}{23}}} \le -u_{23} \eta (p, \alpha )\right) \\&-P\left( {\varvec{\varepsilon }}^{c}_{n_1, n_2}\left( t_{12}\right) )-P({\varvec{\varepsilon }}^{c}_{n_1, n_3}\left( t_{13}\right) )-P({\varvec{\varepsilon }}^{c}_{n_2, n_3}\left( t_{23}\right) \right) \\ \ge 1&-C_{21}e^{-cu_{12}^2 log\left( p\right) }-C_{22}e^{-cu_{13}^2 log\left( p\right) }-C_{23}e^{-cu_{23}^2 log\left( p\right) }-n_1^{-1}n_2^{-1}-n_2^{-1}n_3^{-1}\\&-n^{-1}_1n^{-1}_3-P\left( {\varvec{\varepsilon }}^{c}_{n_1, n_2}\right) \left( t_{12}\right) -P\left( {\varvec{\varepsilon }}^{c}_{n_1, n_3}\right) \left( t_{13}\right) -P\left( {\varvec{\varepsilon }}^{c}_{n_2, n_3}\right) \left( t_{23}\right) \rightarrow 1. \end{aligned}$$

Under (A.2), for \(1\le i<j\le 3\), let

$$\begin{aligned}&t_{ij} \asymp \max \{ n_i^{-\frac{1}{2}}\left( \log \left( pn_i\right) \right) ^{\frac{1}{2}}+n_i^{-1}\left( \log \left( pn_i\right) \right) ^{\frac{2}{\gamma }}, n_j^{-\frac{1}{2}}\left( \log \left( pn_j\right) \right) ^{\frac{1}{2}}+n_j^{-1}\left( \log \left( pn_j\right) \right) ^{\frac{2}{\gamma }}\}, \end{aligned}$$

thus

$$\begin{aligned}&P\left( {\varvec{\varepsilon }}^{c}_{n_1, n_2}\left( t_{12}\right) \right) +P\left( {\varvec{\varepsilon }}^{c}_{n_1, n_3}\left( t_{13}\right) \right) +P\left( {\varvec{\varepsilon }}^{c}_{n_2, n_3}\left( t_{23}\right) \right) \le cn_1^{-1}+ cn_2^{-1}+cn_3^{-1}. \end{aligned}$$

Following from (25) and (26), we can get the conclusion. \(\square\)

1.4 A.4 Proof of Theorem 3

Define the event \({\mathcal {B}}_{1n}=\left\{ \hat{{\varvec{S}}}=\left\{ 1,\dots ,p \right\} \right\}\), \({\mathcal {B}}_{2n}=\{T_{smax}>(1+\{2\log \left( 3p\right) \}^{-1})\sqrt{2\log \left( 3p\right) }+\sqrt{0.0002 \log \left( 1/\alpha \right) }\}\) and \({\varvec{A}}= \left\{ T_{smax}>\left( 1+\left\{ 2\log \left( 3p\right) \right\} ^{-1}\right) \sqrt{2\log \left( 3p\right) }+\sqrt{2 \log \left( 1/\alpha \right) }\right\}\). Under \({\varvec{H}}_0\), we have that \(P_{{\varvec{H}}_0}\left( {\mathcal {B}}^{c}_{1n}\right) \le P_{{\varvec{H}}_0}\left( {\mathcal {B}}_{2n}\right) .\) By the fact that

$$\begin{aligned} P_{{\varvec{H}}_0}\left( {\mathcal {B}}_{2n}\right) {=} P_{{\varvec{H}}_0}({\mathcal {B}}_{2n}\cap {\varvec{A}})+P_{{\varvec{H}}_0}({\mathcal {B}}_{2n}\cap {\varvec{A}}^c), \end{aligned}$$

and

$$\begin{aligned} P_{{\varvec{H}}_0}\left\{ \left\{ T^{s}_{smax} >c^s_{s, \alpha }\right\} , {{\mathcal {B}}_{1 n}}\right\} =0, \end{aligned}$$

we can obtain

$$\begin{aligned}&P_{{\varvec{H}}_0}\left\{ T^{s}_{smax}>c^s_{s, \alpha }\right\} \le P_{{\varvec{H}}_0}\left\{ \left\{ T^{s}_{smax}>c^s_ {s, \alpha }\right\} , {{\mathcal {B}}_{1 n}}\right\} +P_{{\varvec{H}}_0}\left\{ {{\mathcal {B}}^{c}_{1 n}}\right\} ,\\&\le P_{{\varvec{H}}_0}\left\{ \left\{ T^{s}_{smax} >c^s_{s, \alpha }\right\} , {{\mathcal {B}}_{1 n}}\right\} +P_{{\varvec{H}}_0}\left\{ {{\mathcal {B}}_{2n}}\right\} \le P_{{\varvec{H}}_0}({\mathcal {B}}_{2n}\cap {\varvec{A}})+P_{{\varvec{H}}_0}({\mathcal {B}}_{2n}\cap {\varvec{A}}^c). \end{aligned}$$

Thus, we have that

$$\begin{aligned} \limsup _{n_1,n_2, n_3,p \rightarrow \infty } P_{{\varvec{H}}_0}\left( T^{s}_{smax} >c^s_{s, \alpha }\right) \le \alpha + o_{p}(1). \end{aligned}$$

The proof of the non-studentized analog \({\varvec{T}}^{s}_{nsmax}\) can be constructed similarly, and thus, we complete the proof of Theorem 3. \(\square\)

1.5 A.5 Proof of Theorem 4

Define the set \(\mathbf {{\mathcal{B}}}_{3n}=\left\{ T_{smax}=T^{s}_{smax}\right\}\), and we know that

$$\begin{aligned} T^{s}_{smax}=\mathop {\max }\limits _{l \notin \hat{{\varvec{S}}}} \left\{ \frac{\sqrt{n_1n_2}|{\bar{X}}_{1l}-{\bar{X}}_{2l}|}{\left( n_2{\hat{\sigma }}^{2}_{1l}+n_1{\hat{\sigma }}^{2}_{2l}\right) }, \frac{\sqrt{n_2n_3}|{\bar{X}}_{2l}-{\bar{X}}_{3l}|}{\left( n_3{\hat{\sigma }}^{2}_{2l}+n_2{\hat{\sigma }}^{2}_{3l}\right) }, \frac{\sqrt{n_1n_3}|{\bar{X}}_{1l}-{\bar{X}}_{3l}|}{\left( n_3{\hat{\sigma }}^{2}_{1l}+n_1{\hat{\sigma }}^{2}_{3l}\right) }\right\} . \end{aligned}$$

Because

$$\begin{aligned} c_{s, \alpha } \le \left( 1+\{2\log (3p)\}^{-1}\right) \sqrt{2\log (3p)}+\sqrt{2\log (1/\alpha )} \end{aligned}$$

and \(\lim _{n_1, n_2, n_3, p \rightarrow \infty }P_{{\varvec{H}}_1}\left( T_{smax}>c_{s, \alpha }\right) =1,\) we have that

$$\begin{aligned} \lim _{n_1, n_2, n_3, p \rightarrow \infty } P_{{\varvec{H}}_1}\left( T^{s}_{smax}>\left( 1+\{2\log (3p)\}^{-1}\right) \sqrt{2\log (3p)}+\sqrt{2\log (1/\alpha )}\right) =1, \end{aligned}$$

which implies \(\lim _{n_1, n_2, n_3,p \rightarrow \infty } P_{{\varvec{H}}_1}\left( \mathbf {{\mathcal{B}}}^{c}_{3n}\right) =0.\) Because \(\hat{{\varvec{S}}}_{all}\subseteq \left\{ 1, \dots , 3p\right\}\) and the following three equations

$$\begin{aligned} P(\mathop {\max }\limits _{l \notin \hat{{\varvec{S}}}_{all}}\left\{ |{W_{sl}}|>c_{s, \alpha }\right\} ) \le P(|{\varvec{W}}_{s}|_{\propto }>c_{s, \alpha }),~~c_{s,\alpha }=\inf \{t \in R: P({|{\varvec{W}}_{s}|}_{\propto } \ge t) \le \alpha \},\\ c_{s,\alpha }^{s}=\inf \left\{ t \in R: P(\mathop {\max }\limits _{l \notin \hat{{\varvec{S}}}_{all}}{|W_{sl}|} \ge t) \le \alpha \right\} , \end{aligned}$$

we have that \(c^s_{s, \alpha } \le c_{s, \alpha }.\) Then, we know that

$$\begin{aligned}&P_{{\varvec{H}}_1}\left( T^{s}_{smax}>c^{s}_{s, \alpha }\right) \ge P_{{\varvec{H}}_1} \left\{ \left( T^{s}_{smax}>c^{s}_ {s, \alpha }\right) ,\ \mathbf {{\mathcal{B}}}_{3n}\right\} \\ \ge&P_{{\varvec{H}}_1} \left\{ T_{smax}>c_{s, \alpha },\ \mathbf {{\mathcal{B}}}_{3n}\right\} \ge P_{{\varvec{H}}_1}\left\{ T_{smax}>c_{s, \alpha }\right\} -P_{{\varvec{H}}_1}\left\{ \mathbf {{\mathcal{B}}}^{c}_{3n}\right\} \rightarrow 1, \end{aligned}$$

as \(n_1, n_2, n_3, p \rightarrow \infty .\) Similarly, the proof for \(T^{s}_{nsmax}\) is similar, and then, we complete the proof of this theorem. \(\square\)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Hu, J. Multi-sample hypothesis testing of high-dimensional mean vectors under covariance heterogeneity. Ann Inst Stat Math (2024). https://doi.org/10.1007/s10463-024-00896-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10463-024-00896-8

Keywords

Navigation