Skip to main content
Log in

On a projection least squares estimator for jump diffusion processes

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

This paper deals with a projection least squares estimator of the drift function of a jump diffusion process X computed from multiple independent copies of X observed on [0, T]. Risk bounds are established on this estimator and on an associated adaptive estimator. Finally, some numerical experiments are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz, M., Stegun I.A. (1964). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. USA: Dover Publications.

    Google Scholar 

  • Amorino, C., Gloter, A. (2021). Invariant density adaptive estimation for ergodic jump diffusion processes over anisotropic classes. Journal of Statistical Planning and Inference, 213, 106–129.

    Article  MathSciNet  Google Scholar 

  • Amorino, C., Dion-Blanc, C., Gloter, A., Lemler, S. (2022). On the nonparametric inference of coefficients of self-exciting jump-diffusion. Electronic Journal of Statistics, 16, 3212–3277.

    Article  MathSciNet  Google Scholar 

  • Applebaum, C. (2009). Lévy Processes and Stochastic Calculus. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Belomestny, D., Comte, F., Genon-Catalot, V. (2019). Sobolev-Hermite versus Sobolev nonparametric density estimation on \({\mathbb{R} }\). Annals of the Institute of Statistical Mathematics, 71(1), 29–62.

    Article  MathSciNet  Google Scholar 

  • Bichteler, K., Jacod, J. (1983). Calcul de Malliavin pour les diffusions avec sauts : existence d’une densité dans le cas unidimensionnel. Séminaire de Probabilités, 17, 132–157.

    Google Scholar 

  • Chen, Z.Q., Hu, E., Xie, L., Zhang, X. (2017). Heat Kernels for nonsymmetric diffusion operators with jumps. Journal of Differential Equations, 263(10), 6576–6634.

    Article  ADS  MathSciNet  Google Scholar 

  • Clément, E., Gloter, A. (2019). Estimating Functions for SDE Driven by Stable Lévy Processes. Annales de l’Institut Henri Poincaré (B), 55(3), 1316–1348.

    ADS  Google Scholar 

  • Clément, E., Gloter, A. (2020). Joint estimation for sde driven by locally stable Lévy processes. Electronic Journal of Statistics, 14(2), 2922–2956.

    Article  MathSciNet  Google Scholar 

  • Cohen, A., Davenport, M.A., Leviatan, D. (2013) On the stability and accuracy of least squares approximations. Foundations of Computational Mathematics, 13, 819–834.

    Article  MathSciNet  Google Scholar 

  • Comte, F. (2001). Adaptive estimation of the spectrum of a stationary Gaussian sequence. Bernoulli, 7(2), 267–298.

    Article  MathSciNet  Google Scholar 

  • Comte, F., Genon-Catalot, V. (2020). Regression function estimation as a partly inverse problem. Annals of the Institute of Statistical Mathematics, 72(4), 1023–1054.

    Article  MathSciNet  Google Scholar 

  • Comte, F., Genon-Catalot, V. (2020). Nonparametric drift estimation for i.i.d. paths of stochastic differential equations. The Annals of Statistics, 48(6), 3336–3365.

    Article  MathSciNet  Google Scholar 

  • Delattre, M., Genon-Catalot, V., Samson, A. (2013). Maximum likelihood estimation for stochastic differential equations with random effects. Scandinavian Journal of Statistics, 40, 322–343.

    Article  MathSciNet  Google Scholar 

  • Dellacherie, C.A., Meyer, P.A. (1980). Probabilités et potentiel : théorie des martingales. Paris: Hermann.

    Google Scholar 

  • Denis, C., Dion-Blanc, C., Martinez M. (2021). A ridge estimator of the drift from discrete repeated observations of the solution of a stochastic differential equation. Bernoulli, 27, 2675–2713.

    Article  MathSciNet  Google Scholar 

  • DeVore, R.A., Lorentz, G.G. (1993). Constructive Approximation. Berlin, Heidelberg: Springer.

    Book  Google Scholar 

  • Ditlevsen, S., De Gaetano, A. (2005). Mixed effects in stochastic differential equation models. REVSTAT, 3, 137–153.

    MathSciNet  Google Scholar 

  • Dussap, F. (2021). Anisotropic multivariate deconvolution using projection on the laguerre basis. Journal of Statistical Planning and Inference, 215, 23–46.

    Article  MathSciNet  Google Scholar 

  • Gloter, A., Loukianova, D., Mai, H. (2018). Jump filtering and efficient drift estimation for Lévy-Driven SDEs. The Annals of Statistics, 46(4), 1445–1480.

    Article  MathSciNet  Google Scholar 

  • Marie, N., Rosier, A. (2023). Nadaraya-Watson Estimator for I.I.D paths of diffusion processes. Scandinavian Journal of Statistics, 50(2), 589–637.

    Article  MathSciNet  Google Scholar 

  • Picchini, U., Ditlevsen, S. (2011) Practical estimation of high dimensional stochastic differential mixed-effects models. Computational Statistics and Data Analysis, 55, 1426–1444.

    Article  MathSciNet  Google Scholar 

  • Schmisser, E. (2014). Non-parametric adaptive estimation of the drift for a jump diffusion process. Stochastic Processes and their Applications, 124, 883–914.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Marie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Proofs

1.1 A.1 Proof of Lemma 1

First, let us show that the symmetric matrix \({\varvec{\Psi }}_{m,\sigma }\) is positive semidefinite. Indeed, for any \(y\in {\mathbb {R}}^m\),

$$\begin{aligned} y^*{\varvec{\Psi }}_{m,\sigma }y= & {} \frac{1}{NT}\sum _{j,\ell = 1}^{m}y_jy_{\ell } \sum _{i,k = 1}^{N}{\mathbb {E}}\left( \left( \int _{0}^{T}\varphi _j(X_{s}^{i})(\sigma (X_{s}^{i})dB_{s}^{i} + \gamma (X_{s}^{i})d{\mathfrak {Z}}_{s}^{i})\right) \right. \nonumber \\{} & {} \hspace{5cm}\left. \times \left( \int _{0}^{T}\varphi _{\ell }(X_{s}^{k})(\sigma (X_{s}^{k})dB_{s}^{k} + \gamma (X_{s}^{k})d{\mathfrak {Z}}_{s}^{k})\right) \right) \nonumber \\= & {} \frac{1}{NT}{\mathbb {E}}\left[ \left( \sum _{i = 1}^{N}\int _{0}^{T}\tau _y(X_{s}^{i})(\sigma (X_{s}^{i})dB_{s}^{i} + \gamma (X_{s}^{i})d{\mathfrak {Z}}_{s}^{i})\right) ^2\right] \geqslant 0 \quad \textrm{with}\quad \tau _y(.):=\sum _{j = 1}^{m}y_j\varphi _j(.). \end{aligned}$$

Moreover, by the isometry property of Itô’s integral (with respect to B), by the isometry type property of the stochastic integral with respect to \({\mathfrak {Z}}\), and since \(\sigma \) and \(\gamma \) are bounded, for every \(j\in \{1,\dots ,m\}\),

$$\begin{aligned} y^*{\varvec{\Psi }}_{m,\sigma }y= & {} \frac{1}{T}\mathbb E\left[ \left( \int _{0}^{T}\tau _y(X_s)\sigma (X_s)dB_s\right) ^2\right] + \frac{1}{T}{\mathbb {E}}\left[ \left( \int _{0}^{T}\tau _y(X_s)\gamma (X_s)d\mathfrak Z_s\right) ^2\right] \nonumber \\= & {} \frac{1}{T}\int _{0}^{T}{\mathbb {E}}(\tau _y(X_s)^2\sigma (X_s)^2)ds +\frac{\lambda {\mathfrak {c}}_{\zeta ^2}}{T} \int _{0}^{T}\mathbb E(\tau _y(X_s)^2\gamma (X_s)^2)ds \nonumber \\\leqslant & {} (\Vert \sigma \Vert _{\infty }^{2} +\lambda \mathfrak c_{\zeta ^2}\Vert \gamma \Vert _{\infty }^{2}) \int _{-\infty }^{\infty } \left( \sum _{j = 1}^{m}y_j\varphi _j(x)\right) ^2f_T(x)dx = (\Vert \sigma \Vert _{\infty }^{2} +\lambda \mathfrak c_{\zeta ^2}\Vert \gamma \Vert _{\infty }^{2}) \Vert {\varvec{\Psi }}_{m}^{1/2}y\Vert _{2,m}^{2}. \end{aligned}$$
(5)

Therefore, since \({\varvec{\Psi }}_{m,\sigma }\) is positive semidefinite, and by Inequality (),

$$\begin{aligned} \textrm{trace}({\varvec{\Psi }}_{m}^{-1/2}{\varvec{\Psi }}_{m,\sigma }{\varvec{\Psi }}_{m}^{-1/2})\leqslant & {} m\Vert {\varvec{\Psi }}_{m}^{-1/2}{\varvec{\Psi }}_{m,\sigma }{\varvec{\Psi }}_{m}^{-1/2}\Vert _{\textrm{op}}\\= & {} m\cdot \sup \{y^*{\varvec{\Psi }}_{m,\sigma }y; y\in {\mathbb {R}}^m\text { and }\Vert {\varvec{\Psi }}_{m}^{1/2}y\Vert _{2,m} = 1\}\\\leqslant & {} (\Vert \sigma \Vert _{\infty }^{2} +\lambda \mathfrak c_{\zeta ^2}\Vert \gamma \Vert _{\infty }^{2})m. \end{aligned}$$

\(\Box \)

1.2 A.2 Proof of Theorem 1

The proof of Theorem 1 relies on the two following lemmas.

Lemma 2

There exists a constant \(\mathfrak c_{2} > 0\), not depending on m and N, such that

$$\begin{aligned} {\mathbb {E}}(|\widehat{\textbf{E}}_{m}^{*}\widehat{\textbf{E}}_m|^2) \leqslant {\mathfrak {c}}_{2} \frac{mL(m)^2}{N^2}. \end{aligned}$$

Lemma 3

Consider the event

$$\begin{aligned} \Omega _m:= \left\{ \sup _{\tau \in {\mathcal {S}}_m} \left| \frac{\Vert \tau \Vert _{N}^{2}}{\Vert \tau \Vert _{f_T}^{2}} - 1\right| \leqslant \frac{1}{2} \right\} . \end{aligned}$$

Under Assumptions 1, there exists a constant \({\mathfrak {c}}_{3} > 0\), not depending on m and N, such that

$$\begin{aligned} {\mathbb {P}}(\Omega _{m}^{c}) \leqslant \frac{\mathfrak c_{3}}{N^7} \quad \text {and}\quad {\mathbb {P}}(\Lambda _{m}^{c}) \leqslant \frac{\mathfrak c_{3}}{N^7}. \end{aligned}$$

The proof of Lemma 2 is postponed to Subsubsection a.2.2, and the proof of Lemma 3 remains the same as the proof of Comte and Genon-Catalot (2020b), Lemma 6.1, because \((B^1,Z^1),\dots ,(B^N,Z^N)\) are independent.

1.2.1 A.2.1 Steps of the proof

First of all,

$$\begin{aligned} \Vert {{\widetilde{b}}}_m - b_I\Vert _{N}^{2}= & {} \Vert b_I\Vert _{N}^{2}{\textbf {1}}_{\Lambda _{m}^{c}} + \Vert {\widehat{b}}_m - b_I\Vert _{N}^{2}{{\textbf {1}}}_{\Lambda _m}\\= & {} \Vert b_I\Vert _{N}^{2}{{\textbf {1}}}_{\Lambda _{m}^{c}} + \Vert {\widehat{b}}_m - b_I\Vert _{N}^{2}{{\textbf {1}}}_{\Lambda _m\cap \Omega _m} + \Vert {\widehat{b}}_m - b_I\Vert _{N}^{2}{{\textbf {1}}}_{\Lambda _m\cap \Omega _{m}^{c}} =: U_1 + U_2 + U_3. \end{aligned}$$

Let us find suitable bounds on \({\mathbb {E}}(U_1)\), \({\mathbb {E}}(U_2)\) and \({\mathbb {E}}(U_3)\).

  • Bound on \({\mathbb {E}}(U_1)\). By Cauchy-Schwarz’s inequality,

    $$\begin{aligned} {\mathbb {E}}(U_1)\leqslant & {} {\mathbb {E}}(\Vert b_I\Vert _{N}^{4})^{1/2}\mathbb P(\Lambda _{m}^{c})^{1/2} \leqslant \mathbb E\left( \frac{1}{T}\int _{0}^{T}b_I(X_t)^4dt\right) ^{1/2} {\mathbb {P}}(\Lambda _{m}^{c})^{1/2}\\\leqslant & {} {\mathfrak {c}}_1{\mathbb {P}}(\Lambda _{m}^{c})^{1/2}<\infty \quad \textrm{with}\quad {\mathfrak {c}}_1 =\left( \int _{-\infty }^{\infty }b_I(x)^4f_T(x)dx\right) ^{1/2} <\infty . \end{aligned}$$
  • Bound on \({\mathbb {E}}(U_2)\). Let \(\Pi _{N,m}(.)\) be the orthogonal projection from \({\mathbb {L}}^2(I,f_T(x)dx)\) onto \(\mathcal S_m\) with respect to the empirical scalar product \(\langle .,.\rangle _N\). Then,

    $$\begin{aligned} \Vert {\widehat{b}}_m - b_I\Vert _{N}^{2} = \Vert {\widehat{b}}_m -\Pi _{N,m}(b_I)\Vert _{N}^{2} + \min _{\tau \in {\mathcal {S}}_m}\Vert b_I -\tau \Vert _{N}^{2}. \end{aligned}$$
    (6)

    As in the proof of Comte and Genon-Catalot (2020b), Proposition 2.1, on \(\Omega _m\),

    $$\begin{aligned} \Vert {\widehat{b}}_m -\Pi _{N,m}(b_I)\Vert _{N}^{2} = \widehat{\textbf{E}}_{m}^{*}{\widehat{\varvec{\Psi }}}_{m}^{-1}\widehat{\textbf{E}}_m \leqslant 2\widehat{\textbf{E}}_{m}^{*}{\varvec{\Psi }}_{m}^{-1}\widehat{\textbf{E}}_m. \end{aligned}$$

    So,

    $$\begin{aligned} {\mathbb {E}}(\Vert {\widehat{b}}_m -\Pi _{N,m}(b_I)\Vert _{N}^{2} {\textbf {1}}_{\Lambda _m\cap \Omega _m})\leqslant & {} 2\mathbb E\left( \sum _{j,\ell = 1}^{m}[\widehat{\textbf{E}}_m]_j[\widehat{\textbf{E}}_m]_{\ell } [{\varvec{\Psi }}_{m}^{-1}]_{j,\ell }\right) \\= & {} \frac{2}{NT}\sum _{j,\ell = 1}^{m} [{\varvec{\Psi }}_{m,\sigma }]_{j,\ell } [{\varvec{\Psi }}_{m}^{-1}]_{j,\ell } = \frac{2}{NT}\textrm{trace}({\varvec{\Psi }}_{m}^{-1/2} {\varvec{\Psi }}_{m,\sigma } {\varvec{\Psi }}_{m}^{-1/2}). \end{aligned}$$

    Then, by Equality (6) and Lemma 1,

    $$\begin{aligned} {\mathbb {E}}(U_2)\leqslant & {} {\mathbb {E}}\left( \min _{\tau \in \mathcal S_m}\Vert b_I -\tau \Vert _{N}^{2}\right) + \frac{2}{NT}\textrm{trace}({\varvec{\Psi }}_{m}^{-1/2} {\varvec{\Psi }}_{m,\sigma } {\varvec{\Psi }}_{m}^{-1/2})\\\leqslant & {} \min _{\tau \in {\mathcal {S}}_m}\Vert b_I -\tau \Vert _{f_T}^{2} + \frac{2m}{NT} (\Vert \sigma \Vert _{\infty }^{2} +\lambda \mathfrak c_{\zeta ^2}\Vert \gamma \Vert _{\infty }^{2}). \end{aligned}$$
  • Bound on \({\mathbb {E}}(U_3)\). Since

    $$\begin{aligned} \Vert {\widehat{b}}_m -\Pi _{N,m}(b_I)\Vert _{N}^{2} = \widehat{\textbf{E}}_{m}^{*}{\widehat{\varvec{\Psi }}}_{m}^{-1}\widehat{\textbf{E}}_m, \end{aligned}$$

    by the definition of the event \(\Lambda _m\), and by Lemma 2,

    $$\begin{aligned} {\mathbb {E}}(\Vert {\widehat{b}}_m -\Pi _{N,m}(b_I)\Vert _{N}^{2} {\textbf {1}}_{\Lambda _m\cap \Omega _{m}^{c}})\leqslant & {} \mathbb E(\Vert {\widehat{\varvec{\Psi }}}_{m}^{-1}\Vert _{\textrm{op}} |\widehat{\textbf{E}}_{m}^{*}\widehat{\textbf{E}}_m| {{\textbf {1}}}_{\Lambda _m\cap \Omega _{m}^{c}})\\\leqslant & {} \frac{{\mathfrak {c}}_T}{L(m)}\cdot \frac{NT}{\log (NT)} {\mathbb {E}}(|\widehat{\textbf{E}}_{m}^{*}\widehat{\textbf{E}}_m|^2)^{1/2} {\mathbb {P}}(\Omega _{m}^{c})^{1/2} \leqslant \frac{\mathfrak c_2m^{1/2}}{\log (NT)}{\mathbb {P}}(\Omega _{m}^{c})^{1/2}, \end{aligned}$$

    where the constant \({\mathfrak {c}}_2 > 0\) doesn’t depend on m and N. Moreover,

    $$\begin{aligned} \min _{\tau \in {\mathcal {S}}_m}\Vert \tau - b_I\Vert _{N}^{2} \leqslant \Vert b_I\Vert _{N}^{2} \quad \textrm{because}\quad 0\in {\mathcal {S}}_m, \end{aligned}$$

    and then,

    $$\begin{aligned} \Vert {\widehat{b}}_m - b_I\Vert _{N}^{2}= & {} \Vert {\widehat{b}}_m -\Pi _{N,m}(b_I)\Vert _{N}^{2} + \min _{\tau \in {\mathcal {S}}_m}\Vert \tau - b_I\Vert _{N}^{2}\\\leqslant & {} \Vert {\widehat{b}}_m -\Pi _{N,m}(b_I)\Vert _{N}^{2} +\Vert b_I\Vert _{N}^{2}. \end{aligned}$$

    Therefore,

    $$\begin{aligned} {\mathbb {E}}(U_3)\leqslant & {} {\mathbb {E}}(\Vert {\widehat{b}}_m -\Pi _{N,m}(b_I)\Vert _{N}^{2} {{\textbf {1}}}_{\Lambda _m\cap \Omega _{m}^{c}}) + {\mathbb {E}}(\Vert b_I\Vert _{N}^{2}{{\textbf {1}}}_{\Lambda _m\cap \Omega _{m}^{c}})\\\leqslant & {} \frac{{\mathfrak {c}}_2m^{1/2}}{\log (NT)} \mathbb P(\Omega _{m}^{c})^{1/2} + {\mathfrak {c}}_1\mathbb P(\Omega _{m}^{c})^{1/2}. \end{aligned}$$

So,

$$\begin{aligned} {\mathbb {E}}(\Vert {{\widetilde{b}}}_m - b_I\Vert _{N}^{2})\leqslant & {} \min _{\tau \in {\mathcal {S}}_m}\Vert b_I -\tau \Vert _{f_T}^{2}\\{} & {} \hspace{1cm} + \frac{2m}{NT}(\Vert \sigma \Vert _{\infty }^{2} + \lambda {\mathfrak {c}}_{\zeta ^2}\Vert \gamma \Vert _{\infty }^{2}) + {\mathfrak {c}}_2 \frac{\sqrt{m{\mathbb {P}}(\Omega _{m}^{c})}}{\log (NT)} + {\mathfrak {c}}_1( {\mathbb {P}}(\Lambda _{m}^{c})^{1/2} +{\mathbb {P}}(\Omega _{m}^{c})^{1/2}). \end{aligned}$$

Therefore, by Lemma 3, there exists a constant \({\mathfrak {c}}_3 > 0\), not depending on m and N, such that

$$\begin{aligned} {\mathbb {E}}(\Vert {{\widetilde{b}}}_m - b_I\Vert _{N}^{2}) \leqslant \min _{\tau \in {\mathcal {S}}_m}\Vert b_I -\tau \Vert _{f_T}^{2} + \mathfrak c_3\left( \frac{m}{NT} +\frac{1}{N}\right) . \end{aligned}$$

\(\square \)

1.2.2 A.2.2 Proof of Lemma 2

In the sequel, the quadratic variation of any piecewise continuous stochastic process \((\Gamma _t)_{t\in [0,T]}\) is denoted by \((\llbracket \Gamma \rrbracket _t)_{t\in [0,T]}\). First of all, note that since B and Z are independent, for every \(j\in \{1,\dots ,m\}\),

$$\left[\kern-0.15em\left[{\int_{0}^{.} {\varphi _{j} } (X_{s} )(\sigma (X_{s} )dB_{s} + \gamma (X_{s} )d{\mathfrak {Z}}_{s} )} \right]\kern-0.15em\right] _{T} = \int_{0}^{T} {\varphi _{j} } (X_{s} )^{2} \sigma (X_{s} )^{2} ds + \int_{0}^{T} {\varphi _{j} } (X_{s} )^{2} \gamma (X_{s} )^{2} dZ_{s}^{{(2)}} = \int_{0}^{T} {\varphi _{j} } (X_{s} )^{2} (\sigma (X_{s} )^{2} + {\mathfrak{c}}_{{\zeta ^{2} }} \lambda \gamma (X_{s} )^{2} )ds + \int_{0}^{T} {\varphi _{j} } (X_{s} )^{2} \gamma (X_{s} )^{2} d{\mathfrak {Z}}_{s}^{{(2)}}$$

where, for every \(t\in [0,T]\),

$$\begin{aligned} Z_{t}^{(2)}:=\llbracket {\mathfrak {Z}}\rrbracket _t = \sum _{n = 1}^{\nu _t}\zeta _{n}^{2} \quad \textrm{and}\quad {\mathfrak {Z}}_{t}^{(2)}:= Z_{t}^{(2)} -{\mathfrak {c}}_{\zeta ^2}\lambda t. \end{aligned}$$

By Jensen’s inequality and Burkholder-Davis-Gundy’s inequality (see Dellacherie and Meyer, 1980, p. 303), there exists a constant \({\mathfrak {c}}_1 > 0\), not depending on m and N, such that

$$ \begin{aligned} {\mathbb{E}}(|\widehat{{\mathbf{E}}}_{m}^{*} \widehat{{\mathbf{E}}}_{m} |^{2} )\leqslant m\sum\limits_{{j = 1}}^{m} {\mathbb{E}} ([\widehat{{\mathbf{E}}}_{m} ]_{j}^{4} ) & \leqslant\frac{{{\mathfrak{c}}_{1} m}}{{N^{4} T^{4} }}\sum\limits_{{j = 1}}^{m} {\mathbb{E}} \left( {\left[\kern-0.15em\left[ {\sum\limits_{{i = 1}}^{N} {\int_{0}^{.} {\varphi _{j} } } (X_{s}^{i} )(\sigma (X_{s}^{i} )dB_{s}^{i} + \gamma (X_{s}^{i} )d3_{s}^{i} )} \right]\kern-0.15em\right]_{T}^{2} } \right) \\ & \leqslant \frac{{2{\mathfrak{c}}_{1} m}}{{N^{2} T^{4} }}\sum\limits_{{j = 1}}^{m} {\mathbb{E}} \left( {\left[\kern-0.15em\left[ {\int\limits_{0}^{.} {\varphi _{j} } (X_{s} )(\sigma (X_{s} )dB_{s} + \gamma (X_{s} )d3_{s} )} \right]\kern-0.15em\right]_{T}^{2} } \right) \\ & \leqslant \frac{{4{\mathfrak{c}}_{1} m}}{{N^{2} T^{4} }}\sum\limits_{{j = 1}}^{m} \begin{gathered} \left[ {{\mathbb{E}}\left[ {\left( {\int_{0}^{T} {\varphi _{j} } (X_{s} )^{2} (\sigma (X_{s} )^{2} + {\mathfrak{c}}_{{\zeta ^{2} }} \lambda \gamma (X_{s} )^{2} )ds} \right)^{2} } \right]} \right] \hfill \\ + {\mathbb{E}}\left[ {\left( {\int_{0}^{T} {\varphi _{j} } (X_{s} )^{2} \gamma (X_{s} )^{2} d3_{s}^{{(2)}} } \right)^{2} } \right]. \hfill \\ \end{gathered} \\ \end{aligned} $$

By Jensen’s inequality,

$$\begin{aligned} \left( \int _{0}^{T}\varphi _j(X_s)^2(\sigma (X_s)^2 + \mathfrak c_{\zeta ^2}\lambda \gamma (X_s)^2)ds\right) ^2= & {} T^2\left( \int _{0}^{T}\varphi _j(X_s)^2(\sigma (X_s)^2 + {\mathfrak {c}}_{\zeta ^2}\lambda \gamma (X_s)^2)\frac{ds}{T}\right) ^2\\\leqslant & {} T\int _{0}^{T}\varphi _j(X_s)^4(\sigma (X_s)^2 + {\mathfrak {c}}_{\zeta ^2}\lambda \gamma (X_s)^2)^2ds. \end{aligned}$$

Moreover, since \(\Vert {{\textbf {x}}}\Vert _{4,m}\leqslant \Vert {{\textbf {x}}}\Vert _{2,m}\) for every \({{\textbf {x}}}\in {\mathbb {R}}^d\),

$$\begin{aligned} \sup _{x\in I}\sum _{j = 1}^{m}\varphi _j(x)^4 = \sup _{x\in I}\Vert (\varphi _j(x))_j\Vert _{4,m}^{4}\leqslant \sup _{x\in I}\Vert (\varphi _j(x))_j\Vert _{2,m}^{4}\leqslant L(m)^2. \end{aligned}$$

So, by applying twice the Fubini–Tonelli theorem,

$$\begin{aligned}{} & {} \sum _{j = 1}^{m} \mathbb E\left[ \left( \int _{0}^{T}\varphi _j(X_s)^2(\sigma (X_s)^2 + {\mathfrak {c}}_{\zeta ^2}\lambda \gamma (X_s)^2)ds\right) ^2\right] \\{} & {} \leqslant 2T\sum _{j = 1}^{m}\int _{0}^{T} \mathbb E(\varphi _j(X_s)^4(\sigma (X_s)^4 + {\mathfrak {c}}_{\zeta ^2}^{2}\lambda ^2\gamma (X_s)^4))ds\\{} & {} = 2T^2\int _{-\infty }^{\infty } \underbrace{\left( \sum _{j = 1}^{m}\varphi _j(x)^4\right) }_{\leqslant L(m)^2} (\sigma (x)^4 +\mathfrak c_{\zeta ^2}^{2}\lambda ^2\gamma (x)^4)f_T(x)dx, \end{aligned}$$

and by the isometry type property of the stochastic integral with respect to \({\mathfrak {Z}}^{(2)}\),

$$\begin{aligned} \sum _{j = 1}^{m}{\mathbb {E}}\left[ \left( \int _{0}^{T}\varphi _j(X_s)^2 \gamma (X_s)^2d{\mathfrak {Z}}_{s}^{(2)}\right) ^2\right]= & {} \lambda {\mathfrak {c}}_{\zeta ^4} \sum _{j = 1}^{m}\int _{0}^{T}{\mathbb {E}}(\varphi _j(X_s)^4\gamma (X_s)^4)ds\\\leqslant & {} \lambda {\mathfrak {c}}_{\zeta ^4}TL(m)^2 \int _{-\infty }^{\infty }\gamma (x)^4f_T(x)dx. \end{aligned}$$

Therefore,

$$\begin{aligned} {\mathbb {E}}(|\widehat{\textbf{E}}_{m}^{*}\widehat{\textbf{E}}_m|^2) \leqslant \frac{{\mathfrak {c}}_2}{N^2T^2}mL(m)^2 \end{aligned}$$

with

$$\begin{aligned} {\mathfrak {c}}_2 = 8{\mathfrak {c}}_1\left( \int _{-\infty }^{\infty }(\sigma (x)^4 + \mathfrak c_{\zeta ^2}^{2}\lambda ^2\gamma (x)^4)f_T(x)dx + \lambda \mathfrak c_{\zeta ^4}\int _{-\infty }^{\infty }\gamma (x)^4f_T(x)dx \right) . \end{aligned}$$

\(\square \)

1.3 A.3 Proof of Theorem 2

Let us consider the events

$$\begin{aligned} \Omega _N:=\bigcap _{m\in {\mathcal {M}}_{N}^{+}}\Omega _m \quad \textrm{and}\quad \Xi _N:=\{{\mathcal {M}}_N\subset \widehat{\mathcal M}_N\subset {\mathcal {M}}_{N}^{+}\}, \end{aligned}$$

where

$$\begin{aligned} {\mathcal {M}}_{N}^{+}:=\left\{ m\in \{1,\dots ,N_T\}: \mathfrak c_{\varphi }^{2}m(\Vert {\varvec{\Psi }}_m^{-1}\Vert _{\textrm{op}}^{2}\vee 1) \leqslant 4{\mathfrak {d}}_T\frac{NT}{\log (NT)}\right\} , \end{aligned}$$

and let us recall that

$$\begin{aligned} {\mathfrak {d}}_T = \min \left\{ \frac{{\mathfrak {c}}_T}{2}, \frac{1}{64{\mathfrak {c}}_{\varphi }^{2}T(\Vert f_T\Vert _{\infty } +\sqrt{{\mathfrak {c}}_T/2}/(3{\mathfrak {c}}_{\varphi }))} \right\} . \end{aligned}$$

As a reminder, the sets \(\widehat{{\mathcal {M}}}_N\) and \({\mathcal {M}}_N\) introduced in Sect. 4 are, respectively, defined by

$$\begin{aligned} \widehat{{\mathcal {M}}}_N =\left\{ m\in \{1,\dots ,N_T\}: \mathfrak c_{\varphi }^{2}m(\Vert {\widehat{\varvec{\Psi }}}_{m}^{-1}\Vert _{\textrm{op}}^{2}\vee 1) \leqslant {\mathfrak {d}}_T\frac{NT}{\log (NT)}\right\} \end{aligned}$$

and

$$\begin{aligned} {\mathcal {M}}_N =\left\{ m\in \{1,\dots ,N_T\}: \mathfrak c_{\varphi }^{2}m(\Vert {\varvec{\Psi }}_{m}^{-1}\Vert _{\textrm{op}}^{2}\vee 1) \leqslant \frac{{\mathfrak {d}}_T}{4}\cdot \frac{NT}{\log (NT)}\right\} . \end{aligned}$$

The proof of Theorem 2 relies on the three following lemmas.

Lemma 4

Under Assumptions 1, 2 and 3, there exists a constant \({\mathfrak {c}}_{4} > 0\), not depending on N, such that

$$\begin{aligned} {\mathbb {P}}(\Xi _{N}^{c})\leqslant \frac{\mathfrak c_{4}}{N^6}. \end{aligned}$$

Lemma 5

(Bernstein type inequality) Consider the empirical process

$$\begin{aligned} \nu _N(\tau ):= \frac{1}{NT}\sum _{i = 1}^{N}\int _{0}^{T}\tau (X_{s}^{i})( \sigma (X_{s}^{i})dB_{s}^{i} +\gamma (X_{s}^{i})d{\mathfrak {Z}}_{s}^{i}); \tau \in \mathcal S_1\cup \dots \cup {\mathcal {S}}_{N_T}. \end{aligned}$$

Under Assumption 3, for every \(\xi ,v > 0\),

$$\begin{aligned} {\mathbb {P}}(\nu _N(\tau )\geqslant \xi ,\Vert \tau \Vert _{N}^{2}\leqslant v^2) \leqslant \exp \left[ -\frac{NT\xi ^2}{4[\mathfrak c_{5} (\Vert \sigma \Vert _{\infty }^{2} + \Vert \gamma \Vert _{\infty }^{2})v^2 +\xi \Vert \tau \Vert _{\infty ,I}\Vert \gamma \Vert _{\infty }]}\right] \end{aligned}$$

with

$$\begin{aligned} {\mathfrak {c}}_{6} = \frac{1}{2}\left[ 1\vee \int _{-\infty }^{\infty }e^{\mathfrak b|z|/2}\pi _{\lambda }(dz)\right] . \end{aligned}$$

Lemma 6

Under Assumptions 1 and 3, there exists a constant \({\mathfrak {c}}_{7} > 0\), not depending on N, such that for every \(m\in {\mathcal {M}}_N\),

$$\begin{aligned} {\mathbb {E}}\left[ \left( \left[ \sup _{\tau \in \mathcal B_{m,m'}}\nu _n(\tau )\right] ^2 - p(m,{\widehat{m}})\right) _{+}{\textbf {1}}_{\Xi _N\cap \Omega _N}\right] \leqslant \frac{\mathfrak c_{8}}{NT} \end{aligned}$$

where, for every \(m'\in {\mathcal {M}}_N\),

$$\begin{aligned} {\mathcal {B}}_{m,m'}:= \left\{ \tau \in {\mathcal {S}}_{m\wedge m'}:\Vert \tau \Vert _{f_T} = 1\right\} \quad \textrm{and}\quad p(m,m'):=\frac{{\mathfrak {c}}_{\text {cal}}}{8}\cdot \frac{m\vee m'}{NT}. \end{aligned}$$

The proof of Lemma 5 is postponed to Subsubsection A.3.2. Lemma 6 is a consequence of Lemma 5 thanks to the \(\mathbb L_{f_T}^{2}\)-\({\mathbb {L}}^{\infty }\) chaining technique (see Comte, 2001, Proposition 4). Finally, the proof of Lemma 4 remains the same as the proof of Comte and Genon-Catalot (2020b), Eq. (6.17), because \((B^1,{\mathfrak {Z}}^1),\dots ,(B^N,{\mathfrak {Z}}^N)\) are independent.

1.3.1 A.3.1 Steps of the proof

First of all,

$$\begin{aligned} \Vert {\widehat{b}}_{{\widehat{m}}} - b_I\Vert _{N}^{2}= & {} \Vert {\widehat{b}}_{{\widehat{m}}} - b_I\Vert _{N}^{2}{{\textbf {1}}}_{\Xi _{N}^{c}} + \Vert {\widehat{b}}_{{\widehat{m}}} - b_I\Vert _{N}^{2}{{\textbf {1}}}_{\Xi _N} \nonumber \\=: & {} U_1 + U_2. \end{aligned}$$
(7)

Let us find suitable bounds on \({\mathbb {E}}(U_1)\) and \(\mathbb E(U_2)\).

  • Bound on \({\mathbb {E}}(U_1)\). Since

    $$\begin{aligned} \Vert {\widehat{b}}_{{\widehat{m}}} -\Pi _{N,{\widehat{m}}}(b_I)\Vert _{N}^{2} = \widehat{\textbf{E}}_{{\widehat{m}}}^{*}{\widehat{\varvec{\Psi }}}_{{\widehat{m}}}^{-1} \widehat{\textbf{E}}_{{\widehat{m}}}, \end{aligned}$$

    by the definition of \(\widehat{{\mathcal {M}}}_N\), and by Lemma 2,

    $$\begin{aligned} {\mathbb {E}}(\Vert {\widehat{b}}_{{\widehat{m}}} -\Pi _{N,{\widehat{m}}}(b_I)\Vert _{N}^{2} {{\textbf {1}}}_{\Xi _{N}^{c}})\leqslant & {} \mathbb E(\Vert {\widehat{\varvec{\Psi }}}_{{\widehat{m}}}^{-1}\Vert _{\textrm{op}} |\widehat{\textbf{E}}_{NT}^{*}\widehat{\textbf{E}}_{NT}| {{\textbf {1}}}_{\Xi _{N}^{c}})\\\leqslant & {} \left[ {\mathfrak {d}}_T \frac{NT}{\log (NT)}\right] ^{1/2} {\mathbb {E}}(|\widehat{\textbf{E}}_{NT}^{*}\widehat{\textbf{E}}_{NT}|^2)^{1/2} {\mathbb {P}}(\Xi _{N}^{c})^{1/2} \leqslant \frac{\mathfrak c_1N}{\log (NT)}{\mathbb {P}}(\Xi _{N}^{c})^{1/2}, \end{aligned}$$

    where the constant \({\mathfrak {c}}_1 > 0\) does not depend on N. Then,

    $$\begin{aligned} {\mathbb {E}}(U_1)\leqslant & {} {\mathbb {E}}(\Vert {\widehat{b}}_{{\widehat{m}}} -\Pi _{N,{\widehat{m}}}(b_I)\Vert _{N}^{2} {{\textbf {1}}}_{\Xi _{N}^{c}}) + {\mathbb {E}}(\Vert b_I\Vert _{N}^{2}{{\textbf {1}}}_{\Xi _{N}^{c}})\\\leqslant & {} \frac{{\mathfrak {c}}_1N}{\log (NT)}\mathbb P(\Xi _{N}^{c})^{1/2} + {\mathfrak {c}}_2{\mathbb {P}}(\Xi _{N}^{c})^{1/2} \end{aligned}$$

    with

    $$\begin{aligned} {\mathfrak {c}}_2 =\left( \int _{-\infty }^{\infty }b_I(x)^4f_T(x)dx\right) ^{1/2}. \end{aligned}$$

    So, by Lemma 4, there exists a constant \({\mathfrak {c}}_3 > 0\), not depending on N, such that

    $$\begin{aligned} {\mathbb {E}}(U_1) \leqslant \frac{{\mathfrak {c}}_3}{N}. \end{aligned}$$
  • Bound on \({\mathbb {E}}(U_2)\). Note that

    $$\begin{aligned} U_2= & {} \Vert {\widehat{b}}_{{\widehat{m}}} - b_I\Vert _{N}^{2}{\textbf {1}}_{\Xi _N\cap \Omega _{N}^{c}} + \Vert {\widehat{b}}_{{\widehat{m}}} - b_I\Vert _{N}^{2}{{\textbf {1}}}_{\Xi _N\cap \Omega _N}\\=: & {} U_{2,1} + U_{2,2}. \end{aligned}$$

    On the one hand, by Lemma 3, there exists a constant \({\mathfrak {c}}_4 > 0\), not depending on N, such that

    $$\begin{aligned} {\mathbb {P}}(\Xi _N\cap \Omega _{N}^{c}) \leqslant \sum _{m\in \mathcal M_{N}^{+}}{\mathbb {P}}(\Omega _{m}^{c}) \leqslant \frac{\mathfrak c_4}{N^6}. \end{aligned}$$

    Then, as for \({\mathbb {E}}(U_1)\), there exists a constant \(\mathfrak c_5 > 0\), not depending on N, such that

    $$\begin{aligned} {\mathbb {E}}(U_{2,1}) \leqslant \frac{{\mathfrak {c}}_5}{N}. \end{aligned}$$

    On the other hand,

    $$\begin{aligned} \gamma _N(\tau ') -\gamma _N(\tau ) = \Vert \tau ' - b\Vert _{N}^{2} -\Vert \tau - b\Vert _{N}^{2} - 2\nu _N(\tau ' -\tau ) \end{aligned}$$

    for every \(\tau ,\tau '\in {\mathcal {S}}_1\cup \dots \cup {\mathcal {S}}_{N_T}\). Moreover, since

    $$\begin{aligned} {\widehat{m}} = \arg \min _{m\in \widehat{{\mathcal {M}}}_N}\{-\Vert {\widehat{b}}_m\Vert _{N}^{2} + \textrm{pen}(m)\} = \arg \min _{m\in \widehat{\mathcal M}_N}\{\gamma _N({\widehat{b}}_m) + \textrm{pen}(m)\}, \end{aligned}$$

    for every \(m\in \widehat{{\mathcal {M}}}_N\),

    $$\begin{aligned} \gamma _N({\widehat{b}}_{{\widehat{m}}}) + \textrm{pen}({\widehat{m}}) \leqslant \gamma _N({\widehat{b}}_m) + \textrm{pen}(m). \end{aligned}$$
    (8)

    On the event \(\Xi _N =\{{\mathcal {M}}_N\subset \widehat{\mathcal M}_N\subset {\mathcal {M}}_{N}^{+}\}\), Inequality (8) remains true for every \(m\in {\mathcal {M}}_N\). Then, on \(\Xi _N\), for any \(m\in {\mathcal {M}}_N\), since \({\mathcal {S}}_m +{\mathcal {S}}_{{\widehat{m}}}\subset \mathcal S_{m\vee {\widehat{m}}}\) under Assumption 2,

    $$\begin{aligned} \Vert {\widehat{b}}_{{\widehat{m}}} - b_I\Vert _{N}^{2}\leqslant & {} \Vert {\widehat{b}_m} - b_I\Vert _{N}^{2} + 2\Vert {\widehat{b}}_{{\widehat{m}}} -{\widehat{b}_{m}}\Vert _{f_T} \nu _N \left( \frac{{\widehat{b}}_{{\widehat{m}}} -{\widehat{b}}_m}{ \Vert {\widehat{b}}_{{\widehat{m}}} -{\widehat{b}}_m\Vert _{f_T}}\right) + \textrm{pen}(m) - \textrm{pen}({\widehat{m}})\\\leqslant & {} \Vert {\widehat{b}}_m - b_I\Vert _{N}^{2} + \frac{1}{8}\Vert {\widehat{b}}_{{\widehat{m}}} -{\widehat{b}}_m\Vert _{f_T}^{2}\\{} & {} \hspace{1.5cm} + 8\left( \left[ \sup _{\tau \in \mathcal B_{m,{\widehat{m}}}}|\nu _N(\tau )|\right] ^2 - p(m,{\widehat{m}})\right) _+ + \textrm{pen}(m) + 8p(m,{\widehat{m}}) - \textrm{pen}({\widehat{m}}). \end{aligned}$$

    Since \(\Vert .\Vert _{f_T}^{2}{{\textbf {1}}}_{\Omega _N}\leqslant 2\Vert .\Vert _{N}^{2}{{\textbf {1}}}_{\Omega _N}\) on \(\mathcal S_1\cup \dots \cup {\mathcal {S}}_{\max ({\mathcal {M}}_{N}^{+})}\), and since \(8p(m,{\widehat{m}})\leqslant \textrm{pen}(m) + \textrm{pen}({\widehat{m}})\), on \(\Xi _N\cap \Omega _N\),

    $$\begin{aligned} \Vert {\widehat{b}}_{{\widehat{m}}} - b_I\Vert _{N}^{2} \leqslant 3\Vert {\widehat{b}}_m - b_I\Vert _{N}^{2} + 4\textrm{pen}(m) + 16\left( \left[ \sup _\tau \in {\mathcal {B}}_m,{\widehat{m}}|\nu _N(\tau )|\right] ^2 - p(m,{\widehat{m}})\right) _+. \end{aligned}$$

    So, by Lemma 6,

    $$\begin{aligned} {\mathbb {E}}(U_{2,2})\leqslant & {} \min _{m\in {\mathcal {M}}_N} \{\mathbb E(3\Vert {\widehat{b}}_m - b_I\Vert _{N}^{2}{{\textbf {1}}}_{\Xi _N}) + 4\textrm{pen}(m)\} + \frac{16{\mathfrak {c}}_{6}}{NT}\\\leqslant & {} {\mathfrak {c}}_6\min _{m\in {\mathcal {M}}_N} \left\{ \inf _{\tau \in {\mathcal {S}}_m} \Vert \tau - b_I\Vert _{f_T}^{2} +\frac{m}{NT} \right\} + \frac{{\mathfrak {c}}_6}{N} \end{aligned}$$

    where \({\mathfrak {c}}_6 > 0\) is a deterministic constant not depending on N.

\(\square \)

1.3.2 A.2.3.2 Proof of Lemma 5

Consider \(\tau \in {\mathcal {S}}_1\cup \dots \cup {\mathcal {S}}_{N_T}\) and, for any \(i\in \{1,\dots ,N\}\), let \(M^i(\tau ) = (M^i(\tau )_t)_{t\in [0,T]}\) be the martingale defined by

$$\begin{aligned} M^i(\tau )_t:= \int _{0}^{t}\tau (X_{s}^{i})(\sigma (X_{s}^{i})dB_{s}^{i} + \gamma (X_{s}^{i})d{\mathfrak {Z}}_{s}^{i}); \;\forall t\in [0,T]. \end{aligned}$$

Moreover, for every \(\varepsilon > 0\), consider

$$\begin{aligned} Y_{\varepsilon }^{i}(\tau ):= \varepsilon M^i(\tau ) - A_{\varepsilon }^{i}(\tau ) - B_{\varepsilon }^{i}(\tau ), \end{aligned}$$

where \(A_{\varepsilon }^{i}(\tau ) = (A_{\varepsilon }^{i}(\tau )_t)_{t\in [0,T]}\) and \(B_{\varepsilon }^{i}(\tau ) = (B_{\varepsilon }^{i}(\tau )_t)_{t\in [0,T]}\) are the stochastic processes defined by

$$\begin{aligned} A_{\varepsilon }^{i}(\tau )_t:= & {} \frac{\varepsilon ^2}{2}\int _{0}^{t}\tau (X_{s}^{i})^2\sigma (X_{s}^{i})^2ds\\{} & {} \hspace{1cm} \textrm{and}\quad B_{\varepsilon }^{i}(\tau )_t:= \int _{0}^{t}\left[ \int _{-\infty }^{\infty }( e^{\varepsilon z\tau (X_{s}^{i})\gamma (X_{s}^{i})} - \varepsilon z\tau (X_{s}^{i})\gamma (X_{s}^{i}) - 1)\pi _{\lambda }(dz)\right] ds \end{aligned}$$

for every \(t\in [0,T]\). The proof is dissected in three steps.

Step 1. Note that for any \(i\in \{1,\dots ,N\}\) and \(t\in [0,T]\),

$$\begin{aligned} |\tau (X_{t}^{i})\gamma (X_{t}^{i})|\leqslant \Vert \tau \Vert _{\infty ,I}\Vert \gamma \Vert _{\infty } \end{aligned}$$

and then, by Assumption 3,

$$\begin{aligned} {\mathbb {E}}\left( \int _{0}^{t}\int _{|z| > 1} |e^{\varepsilon z\tau (X_{s}^{i})\gamma (X_{s}^{i})} - 1|\pi _{\lambda }(dz)ds\right) <\infty \end{aligned}$$

for any \(\varepsilon \in (0,\varepsilon ^*)\) with \(\varepsilon ^* = ({\mathfrak {b}}\wedge 1)/(2\Vert \tau \Vert _{\infty ,I}\Vert \gamma \Vert _{\infty })\). So, \((\exp (Y_{\varepsilon }^{i}(\tau )_t))_{t\in [0,T]}\) is a local martingale by Applebaum (2009), Corollary 5.2.2. In other words, there exists an increasing sequence of stopping times \((T_{n}^{i})_{n\in {\mathbb {N}}}\) such that \(\lim _{n\rightarrow \infty }T_{n}^{i} =\infty \) a.s. and \((\exp (Y_{\varepsilon }^{i}(\tau )_{t\wedge T_{n}^{i}})_{t\in [0,T]}\) is a martingale. Therefore, by Lebesgue’s theorem and Markov’s inequality, for every \(\rho > 0\), the stochastic process \(Y_{N,\varepsilon }(\tau ):= Y_{\varepsilon }^{1}(\tau ) +\dots + Y_{\varepsilon }^{N}(\tau )\) satisfies

$$\begin{aligned} {\mathbb {P}}(e^{Y_{N,\varepsilon }(\tau )_T}>\rho )= & {} \lim _{n\rightarrow \infty }{\mathbb {P}}\left( \exp \left[ \sum _{i = 1}^{N}Y_{\varepsilon }^{i}(\tau )_{T\wedge T_{n}^{i}}\right] >\rho \right) \\\leqslant & {} \frac{1}{\rho }\lim _{n\rightarrow \infty } \mathbb E(\exp (Y_{\varepsilon }^{1}(\tau )_{T\wedge T_{n}^{1}}))^N = \frac{1}{\rho }{\mathbb {E}}(\exp (Y_{\varepsilon }^{1}(\tau )_0))^N =\frac{1}{\rho }. \end{aligned}$$

Step 2. For any \(\varepsilon \in (0,\varepsilon ^*)\) and \(t\in [0,T]\), let us find suitable bounds on

$$\begin{aligned} A_{N,\varepsilon }(\tau )_t:=\sum _{i = 1}^{N}A_{\varepsilon }^{i}(\tau )_t \quad \textrm{and}\quad B_{N,\varepsilon }(\tau )_t:=\sum _{i = 1}^{N}B_{\varepsilon }^{i}(\tau )_t. \end{aligned}$$

On the one hand,

$$\begin{aligned} A_{N,\varepsilon }(\tau )_t\leqslant \frac{\varepsilon ^2\Vert \sigma \Vert _{\infty }^{2}}{2} \sum _{i = 1}^{N}\int _{0}^{t}\tau (X_{s}^{i})^2ds \leqslant \frac{\varepsilon ^2\Vert \sigma \Vert _{\infty }^{2}\Vert \tau \Vert _{N}^{2}NT}{2}. \end{aligned}$$
(9)

On the other hand, for every \(\beta \in (-{\mathfrak {b}}/2,\mathfrak b/2)\), by Taylor’s formula and Assumption 3,

$$\begin{aligned} \int _{-\infty }^{\infty }(e^{\beta z} -\beta z - 1)\pi _{\lambda }(dz)= & {} \beta ^2\int _{-\infty }^{\infty } \left( \int _{0}^{1}(1 -\theta )e^{\theta \beta z}d\theta \right) \pi _{\lambda }(dz)\\\leqslant & {} \frac{{\mathfrak {c}}_1}{2}\beta ^2 \quad \textrm{with}\quad {\mathfrak {c}}_1 = \int _{-\infty }^{\infty }e^{\mathfrak b|z|/2}\pi _{\lambda }(dz) <\infty . \end{aligned}$$

Since \(\varepsilon \in (0,\varepsilon ^*)\), one can take \(\beta =\varepsilon \tau (X_{s}^{i})\gamma (X_{s}^{i})\) for any \(s\in [0,t]\) and \(i\in \{1,\dots ,N\}\), and then

$$\begin{aligned} B_{N,\varepsilon }(\tau )_t\leqslant \frac{\mathfrak c_1\varepsilon ^2}{2}\sum _{i = 1}^{N}\int _{0}^{t} \tau (X_{s}^{i})^2\gamma (X_{s}^{i})^2ds \leqslant \frac{\mathfrak c_1\varepsilon ^{2}\Vert \gamma \Vert _{\infty }^{2}\Vert \tau \Vert _{N}^{2}NT}{2}. \end{aligned}$$
(10)

Therefore, Inequalities (9) and (10) lead to

$$\begin{aligned} A_{N,\varepsilon }(\tau )_t + B_{N,\varepsilon }(\tau )_t\leqslant {\mathfrak {c}}_2\varepsilon ^2(\Vert \sigma \Vert _{\infty }^{2} + \Vert \gamma \Vert _{\infty }^{2})\Vert \tau \Vert _{N}^{2}NT \quad \textrm{with}\quad {\mathfrak {c}}_2 = \frac{1}{2}(1\vee {\mathfrak {c}}_1). \end{aligned}$$

Step 3 (conclusion). Consider \(M_N(\tau ):= M^1(\tau ) +\dots + M^N(\tau )\). For any \(\varepsilon \in (0,\varepsilon ^*)\) and \(\xi ,v > 0\), thanks to Step 2,

$$\begin{aligned} {\mathbb {P}}(\nu _N(\tau )\geqslant \xi ,\Vert \tau \Vert _{N}^{2}\leqslant v^2)\leqslant & {} {\mathbb {P}}(e^{\varepsilon M_N(\tau )_T}\geqslant e^{NT\varepsilon \xi }, A_{N,\varepsilon }(\tau )_T + B_{N,\varepsilon }(\tau )_T\leqslant {\mathfrak {c}}_2\varepsilon ^2(\Vert \sigma \Vert _{\infty }^{2} +\Vert \gamma \Vert _{\infty }^{2})NTv^2)\\\leqslant & {} {\mathbb {P}}(e^{Y_{N,\varepsilon }(\tau )_T}\geqslant \exp (NT\varepsilon \xi -\mathfrak c_2\varepsilon ^2(\Vert \sigma \Vert _{\infty }^{2} +\Vert \gamma \Vert _{\infty }^{2})NTv^2)). \end{aligned}$$

Moreover, taking

$$\begin{aligned} \varepsilon = \frac{\xi }{2{\mathfrak {c}}_2(\Vert \sigma \Vert _{\infty }^{2} +\Vert \gamma \Vert _{\infty }^{2})v^2 +\xi /\varepsilon ^*} <\varepsilon ^* \end{aligned}$$

leads to

$$\begin{aligned} NT\varepsilon \xi -{\mathfrak {c}}_2\varepsilon ^2(\Vert \sigma \Vert _{\infty }^{2} + \Vert \gamma \Vert _{\infty }^{2})NTv^2= & {} \frac{NT\xi ^2[\mathfrak c_2(\Vert \sigma \Vert _{\infty }^{2} +\Vert \gamma \Vert _{\infty }^{2})v^2 + \xi /\varepsilon ^*]}{[2{\mathfrak {c}}_2(\Vert \sigma \Vert _{\infty }^{2} +\Vert \gamma \Vert _{\infty }^{2})v^2 + \xi /\varepsilon ^*]^2}\\\geqslant & {} \frac{NT\xi ^2}{4[{\mathfrak {c}}_2(\Vert \sigma \Vert _{\infty }^{2} + \Vert \gamma \Vert _{\infty }^{2})v^2 +\xi /\varepsilon ^*]}. \end{aligned}$$

Therefore, by Step 1,

$$\begin{aligned} {\mathbb {P}}(\nu _N(\tau )\geqslant \xi ,\Vert \tau \Vert _{N}^{2}\leqslant v^2) \leqslant \exp \left( -\frac{NT\xi ^2}{4[\mathfrak c_2(\Vert \sigma \Vert _{\infty }^{2} + \Vert \gamma \Vert _{\infty }^{2})v^2 +\xi \Vert \tau \Vert _{\infty ,I}\Vert \gamma \Vert _{\infty }]}\right) . \end{aligned}$$

\(\square \)

Appendix B

See Table 1 and Figs. (1, 2 and 3)

Table 1 Means and StD of the MISE of \({\widehat{b}}_{{\widehat{m}}}\) (100 repetitions)
Fig. 1
figure 1

Plots of b and of 10 adaptive estimations for Model 1 (\(\overline{{\widehat{m}}} = 5.3\))

Fig. 2
figure 2

Plots of b and of 10 adaptive estimations for Model 2 (\(\overline{{\widehat{m}}} = 4.2\))

Fig. 3
figure 3

Plots of b and of 10 adaptive estimations for Model 3 (\(\overline{{\widehat{m}}} = 4.1\))

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halconruy, H., Marie, N. On a projection least squares estimator for jump diffusion processes. Ann Inst Stat Math 76, 209–234 (2024). https://doi.org/10.1007/s10463-023-00881-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-023-00881-7

Keywords

Navigation