Skip to main content
Log in

Comparative evaluation of point process forecasts

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

Stochastic models of point patterns in space and time are widely used to issue forecasts or assess risk, and often they affect societally relevant decisions. We adapt the concept of consistent scoring functions and proper scoring rules, which are statistically principled tools for the comparative evaluation of predictive performance, to the point process setting, and place both new and existing methodology in this framework. With reference to earthquake likelihood model testing, we demonstrate that extant techniques apply in much broader contexts than previously thought. In particular, the Poisson log-likelihood can be used for theoretically principled comparative forecast evaluation in terms of cell expectations. We illustrate the approach in a simulation study and in a comparative evaluation of operational earthquake forecasts for Italy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baddeley, A., Turner, R. (2005). spatstat: An R package for analyzing spatial point patterns. Journal of Statistical Software, 12, 1–42.

    Google Scholar 

  • Baddeley, A., Turner, R., Møller, J., Hazelton, M. (2005). Residual analysis for spatial point processes. Journal of the Royal Statistical Society Series B: Statistical Methodology, 67, 617–666.

    MathSciNet  Google Scholar 

  • Baddeley, A., Rubak, E., Turner, R. (2015). Spatial point patterns: Methodology and applications with R. London: Chapman and Hall/CRC Press.

    Google Scholar 

  • Bray, A., Schoenberg, F. P. (2013). Assessment of point process models for earthquake forecasting. Statistical Science, 28, 510–520.

    MathSciNet  Google Scholar 

  • Bray, A., Wong, K., Barr, C. D., Schoenberg, F. P. (2014). Voronoi residual analysis of spatial point process models with applications to California earthquake forecasts. Annals of Applied Statistics, 8, 2247–2267.

    MathSciNet  Google Scholar 

  • Brehmer, J. R. (2021). A construction principle for proper scoring rules. Proceedings of the American Mathematical Society Series B, 8, 297–301.

    MathSciNet  Google Scholar 

  • Brehmer, J. R. (2023). Reproduction material for “Comparative evaluation of point process forecasts”. Available at https://github.com/jbrehmer42/pp_evaluation.

  • Chen, J., Hawkes, A. G., Scalas, E., Trinh, M. (2018). Performance of information criteria for selection of Hawkes process models of financial data. Quantitative Finance, 18, 225–235.

    MathSciNet  Google Scholar 

  • Chiu, S. N., Stoyan, D., Kendall, W. S., & Mecke, J. (2013). Stochastic geometry and its applications (3rd ed.). Chichester: Wiley.

    Google Scholar 

  • Clements, R. A., Schoenberg, F. P., Schorlemmer, D. (2011). Residual analysis methods for space-time point processes with applications to earthquake forecast models in California. Annals of Applied Statistics, 5, 2549–2571.

    MathSciNet  Google Scholar 

  • Daley, D. J., Vere-Jones, D. (2003). An introduction to the theory of point processes (2nd ed., Vol. I). NewYork: Springer.

    Google Scholar 

  • Daley, D. J., Vere-Jones, D. (2004). Scoring probability forecasts for point processes: The entropy score and information gain. Journal of Applied Probability, 41A, 297–312.

    MathSciNet  Google Scholar 

  • Dawid, A. P., & Musio, M. (2014). Theory and applications of proper scoring rules. Metron, 72, 169–183.

    MathSciNet  Google Scholar 

  • Dawid, A. P., Sebastiani, P. (1999). Coherent dispersion criteria for optimal experimental design. Annals of Statistics, 27, 65–81.

    MathSciNet  Google Scholar 

  • Diebold, F. X., Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business & Economic Statistics, 13, 253–263.

    Google Scholar 

  • Ehm, W., Gneiting, T., Jordan, A., Krüger, F. (2016). Of quantiles and expectiles: Consistent scoring functions, Choquet representations and forecast rankings. Journal of the Royal Statistical Society Series B: Statistical Methodology, 78, 505–562.

    MathSciNet  Google Scholar 

  • Falcone, G., Console, R., Murru, M. (2010). Short-term and long-term earthquake occurrence models for Italy: ETES, ERS and LTST. Annals of Geophysics, 53, 41–50.

    Google Scholar 

  • Field, E. H. (2007). Overview of the working group for the development of regional earthquake likelihood models (RELM). Seismological Research Letters, 78, 7–16.

    Google Scholar 

  • Flaxman, S., Chirico, M., Pereira, P., Loeffler, C. (2019). Scalable high-resolution forecasting of sparse spatiotemporal events with kernel methods: A winning solution to the NIJ “Real-Time Crime Forecasting Challenge’’. Annals of Applied Statistics, 13, 2564–2585.

    MathSciNet  Google Scholar 

  • Frongillo, R., Kash, I. A. (2015). Vector-valued property elicitation. Journal of Machine Learning Research: Workshop and Conference Proceedings, 40, 1–18.

    Google Scholar 

  • Frongillo, R., Kash, I. A. (2021). Elicitation complexity of statistical properties. Biometrika, 108, 857–879.

    MathSciNet  Google Scholar 

  • Gerstenberger, M. C., Wiemer, S., Jones, L. M., Reasenberg, P. A. (2005). Real-time forecasts of tomorrow’s earthquakes in California. Nature, 435, 328–331.

    Google Scholar 

  • Gneiting, T. (2011). Making and evaluating point forecasts. Journal of the American Statistical Association, 106, 746–762.

    MathSciNet  Google Scholar 

  • Gneiting, T., Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association, 102, 359–378.

    MathSciNet  Google Scholar 

  • Gneiting, T., Ranjan, R. (2011). Comparing density forecasts using threshold- and quantile-weighted scoring rules. Journal of Business & Economic Statistics, 29, 411–422.

    MathSciNet  Google Scholar 

  • Harte, D. (2015). Log-likelihood of earthquake models: evaluation of models and forecasts. Geophysical Journal International, 201, 711–723.

    Google Scholar 

  • Harte, D., Vere-Jones, D. (2005). The entropy score and its uses in earthquake forecasting. Pure and Applied Geophysics, 162, 1229–1253.

    Google Scholar 

  • Heinrich-Mertsching, C., Thorarinsdottir, T. L., Guttorp, P., Schneider, M. (2021). Validation of point process predictions with proper scoring rules. Preprint. arXiv:2110.11803.

  • Hendrickson, A. D., Buehler, R. J. (1971). Proper scores for probability forecasters. Annals of Mathematical Statistics, 42, 1916–1921.

    MathSciNet  Google Scholar 

  • Hering, A. S., Genton, M. G. (2011). Comparing spatial predictions. Technometrics, 53, 414–425.

    MathSciNet  Google Scholar 

  • Herrmann, M., Marzocchi, W. (2023). Maximizing the forecasting skill of an ensemble model. Geophysical Journal International. https://doi.org/10.1093/gji/ggad020

    Article  Google Scholar 

  • Holzmann, H., Klar, B. (2017). Focusing on regions of interest in forecast evaluation. Annals of Applied Statistics, 11, 2404–2431.

    MathSciNet  Google Scholar 

  • Illian, J., Penttinen, A., Stoyan, H., Stoyan, D. (2008). Statistical analysis and modelling of spatial point patterns. Chichester: Wiley.

    Google Scholar 

  • Jordan, T. H., Chen, Y. T., Gasparini, P., Madariaga, R., Main, I., Marzocchi, W., Papadopoulos, G., Sobolev, G., Yamaoka, K., Zschau, J. (2011). Operational earthquake forecasting: State of knowledge and guidelines for utilization. Annals of Geophysics, 54, 4.

    Google Scholar 

  • Kagan, Y. Y., Jackson, D. D. (1995). New seismic gap hypothesis: Five years after. Journal of Geophysical Research: Solid Earth, 100, 3943–3959.

    Google Scholar 

  • Kagan, Y. Y., Knopoff, L. (1987). Statistical short-term earthquake prediction. Science, 236, 1563–1567.

    Google Scholar 

  • Lavancier, F., Møller, J., Rubak, E. (2015). Determinantal point process models and statistical inference. Journal of the Royal Statistical Society Series B: Statistical Methodology, 77, 853–877.

    MathSciNet  Google Scholar 

  • Lehr, R. (1992). Sixteen s-squared over d-squared: A relation for crude sample size estimates. Statistics in Medicine, 11, 1099–1102.

    Google Scholar 

  • Lerch, S., Thorarinsdottir, T. L., Ravazzolo, F., Gneiting, T. (2017). Forecaster’s dilemma: Extreme events and forecast evaluation. Statistical Science, 32, 106–127.

    MathSciNet  Google Scholar 

  • Lombardi, A. M., Marzocchi, W. (2010). The ETAS model for daily forecasting of Italian seismicity in the CSEP experiment. Annals of Geophysics, 53, 155–164.

    Google Scholar 

  • Marzocchi, W., Zechar, J. D., Jordan, T. H. (2012). Bayesian forecast evaluation and ensemble earthquake forecasting. Bulletin of the Seismological Society of America, 102, 2574–2584.

    Google Scholar 

  • Marzocchi, W., Lombardi, A. M., Casarotti, E. (2014). The establishment of an operational earthquake forecasting system in Italy. Seismological Research Letters, 85, 961–969.

    Google Scholar 

  • Marzocchi, W., Taroni, M., Falcone, G. (2017). Earthquake forecasting during the complex Amatrice-Norcia seismic sequence. Science Advances, 3, e1701239.

    Google Scholar 

  • Meyer, S., Held, L. (2014). Power-law models for infectious disease spread. Annals of Applied Statistics, 8, 1612–1639.

    MathSciNet  Google Scholar 

  • Mohler, G. O., Short, M. B., Brantingham, P. J., Schoenberg, F. P., Tita, G. E. (2011). Self-exciting point process modeling of crime. Journal of the American Statistical Association, 106, 100–108.

    MathSciNet  Google Scholar 

  • Nandan, S., Ouillon, G., Sornette, D., Wiemer, S. (2019). Forecasting the full distribution of earthquake numbers is fair, robust, and better. Seismological Research Letters, 90, 1650–1659.

    Google Scholar 

  • Nolde, N., Ziegel, J. F. (2017). Elicitability and backtesting: Perspectives for banking regulation. Annals of Applied Statistics, 11, 1833–1874.

    MathSciNet  Google Scholar 

  • Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis for point processes. Journal of the American Statistical Association, 83, 9–27.

    Google Scholar 

  • Ogata, Y. (1998). Space-time point-process models for earthquake occurrences. Annals of the Institute of Statistical Mathematics, 50, 379–402.

    Google Scholar 

  • Ogata, Y., Katsura, K., Falcone, G., Nanjo, K., Zhuang, J. (2013). Comprehensive and topical evaluations of earthquake forecasts in terms of number, time, space, and magnitude. Bulletin of the Seismological Society of America, 103, 1692–1708.

    Google Scholar 

  • R Core Team. (2021). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Reinhart, A. (2018). A review of self-exciting spatio-temporal point processes and their applications. Statistical Science, 33, 299–318.

    MathSciNet  Google Scholar 

  • Rhoades, D., Schorlemmer, D., Gerstenberger, M., Christophersen, A., Zechar, J. D., Imoto, M. (2011). Efficient testing of earthquake forecasting models. Acta Geophysica, 59, 728–747.

    Google Scholar 

  • Rockafellar, R. T. (1970). Convex Analysis. Princeton University Press.

    Google Scholar 

  • Savage, L. J. (1971). Elicitation of personal probabilities and expectations. Journal of the American Statistical Association, 66, 783–801.

    MathSciNet  Google Scholar 

  • Schoenberg, F. P. (2003). Multidimensional residual analysis of point process models for earthquake occurrences. Journal of the American Statistical Association, 98, 789–795.

    MathSciNet  Google Scholar 

  • Schoenberg, F. P., Hoffmann, M., Harrigan, R. J. (2019). A recursive point process model for infectious diseases. Annals of the Institute of Statistical Mathematics, 71, 1271–1287.

    MathSciNet  Google Scholar 

  • Schorlemmer, D., Gerstenberger, M. C., Wiemer, S., Jackson, D. (2007). Earthquake likelihood model testing. Seismological Research Letters, 78, 17–29.

    Google Scholar 

  • Schorlemmer, D., Werner, M. J., Marzocchi, W., Jordan, T. H., Ogata, Y., Jackson, D. D., Mak, S., Rhoades, D. A., Gerstenberger, M. C., Hirata, N., Liukis, M., Maechling, P. J., Strader, A., Taroni, M., Wiemer, S., Zechar, J. D., Zhuang, J. (2018). The collaboratory for the study of earthquake predictability: Achievements and priorities. Seismological Research Letters, 89, 1305–1313.

    Google Scholar 

  • Serafini, F., Naylor, M., Lindgren, F., Werner, M. J., Main, I. (2022). Ranking earthquake forecasts using proper scoring rules: Binary events in a low probability environment. Geophysical Journal International, 230, 1419–1440.

    Google Scholar 

  • Taroni, M., Marzocchi, W., Schorlemmer, D., Werner, M. J., Wiemer, S., Zechar, J. D., Heiniger, L., Euchner, F. (2018). Prospective CSEP evaluation of 1-day, 3-month, and 5-yr earthquake forecasts for Italy. Seismological Research Letters, 89, 1251–1261.

    Google Scholar 

  • Thorarinsdottir, T. L. (2013). Calibration diagnostic for point process models via the probability integral transform. Stat, 2, 150–158.

    MathSciNet  Google Scholar 

  • van Belle, G. (2008). Statistical rules of thumb. Wiley series in probability and statistics (2nd ed.). Chichester: Wiley.

    Google Scholar 

  • Woessner, J., Christophersen, A., Zechar, J. D., Monelli, D. (2010). Building self-consistent, short-term earthquake probability (STEP) models: Improved strategies and calibration procedures. Annals of Geophysics, 53, 141–154.

    Google Scholar 

  • Zechar, J. D., Gerstenberger, M. C., Rhoades, D. A. (2010a). Likelihood-based tests for evaluating space-rate-magnitude earthquake forecasts. Bulletin of the Seismological Society of America, 100, 1184–1195.

    Google Scholar 

  • Zechar, J. D., Schorlemmer, D., Liukis, M., Yu, J., Euchner, F., Maechling, P. J., Jordan, T. H. (2010b). The collaboratory for the study of earthquake predictability perspective on computational earthquake science. Concurrency and Computation: Practice and Experience, 22, 1836–1847.

    Google Scholar 

  • Zhuang, J., Mateu, J. (2019). A semiparametric spatiotemporal Hawkes-type point process model with periodic background for crime data. Journal of the Royal Statistical Society Series A: Statistics in Society, 182, 919–942.

    MathSciNet  Google Scholar 

  • Zhuang, J., Ogata, Y., Vere-Jones, D. (2002). Stochastic declustering of space-time earthquake occurrences. Journal of the American Statistical Association, 97, 369–380.

    MathSciNet  Google Scholar 

Download references

Acknowledgements

Jonas Brehmer and Tilmann Gneiting are grateful for support by the Klaus Tschira Foundation. Jonas Brehmer gratefully acknowledges support by the German Research Foundation (DFG) through Research Training Group RTG 1953. Part of this research came to fruition during mutual visits of Kirstin Strokorb at the University of Mannheim and Jonas Brehmer and Martin Schlather at Cardiff University during a workshop funded by the London Mathematical Society. We thank our hosting institutions for their generous hospitality. The authors would also like to thank Claudio Heinrich-Mertsching, Christopher Dörr and Alexander Jordan for helpful discussions, and Kristof Kraus for code review. Likewise, we are grateful to the anonymous reviewers for their comments that helped improve the clarity of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas R. Brehmer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10463_2023_875_MOESM1_ESM.pdf

The Supplementary Material contains additional technical details and further simulation experiments. R code for reproduction is publicly available (Brehmer 2023). Data are available from the authors upon request.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brehmer, J.R., Gneiting, T., Herrmann, M. et al. Comparative evaluation of point process forecasts. Ann Inst Stat Math 76, 47–71 (2024). https://doi.org/10.1007/s10463-023-00875-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-023-00875-5

Keywords

Navigation