Skip to main content
Log in

Robust variable selection with exponential squared loss for partially linear spatial autoregressive models

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we consider variable selection for a class of semiparametric spatial autoregressive models based on exponential squared loss (ESL). Using the orthogonal projection technique, we propose a novel orthogonality-based variable selection procedure that enables simultaneous model selection and parameter estimation, and identifies the significance of spatial effects. Under appropriate conditions, we show that the proposed procedure is consistent and the resulting estimator has oracle properties. Furthermore, some simulation studies and an analysis of the Boston housing price data are also carried out to examine the finite-sample performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Basile, R. (2009). Productivity polarization across regions in Europe: The role of nonlinearities and spatial dependence. International Regional Science Review, 32(1), 92–115.

    Article  Google Scholar 

  • Case, A. C. (1991). Spatial patterns in household demand. Econometrica, 59(4), 953–965.

    Article  Google Scholar 

  • Cheng, S., Chen, J., Liu, X. (2019). GMM estimation of partially linear single-index spatial autoregressive model. Spatial Statistics, 31, 100354.

    Article  MathSciNet  Google Scholar 

  • Du, J., Sun, X., Cao, R., et al. (2018). Statistical inference for partially linear additive spatial autoregressive models. Spatial Statistics, 25, 52–67.

    Article  MathSciNet  Google Scholar 

  • Fan, J., Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96(456), 1348–1360.

    Article  MathSciNet  MATH  Google Scholar 

  • Harrison, D., Rubinfeld, D. L. (1978). Hedonic housing prices and the demand for clean air. Journal of Environmental Economics and Management, 5(1), 81–102.

    Article  MATH  Google Scholar 

  • Jiang, Y., Ji, Q., Xie, B. (2017). Robust estimation for the varying coefficient partially nonlinear models. Journal of Computational and Applied Mathematics, 326, 31–43.

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang, Y., Tian, G. L., Fei, Y. (2019). A robust and efficient estimation method for partially nonlinear models via a new MM algorithm. Statistical Papers, 60(6), 2063–2085.

    Article  MathSciNet  MATH  Google Scholar 

  • Kelejian, H. H., Prucha, I. R. (1998). A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances. The Journal of Real Estate Finance and Economics, 17(1), 99–121.

    Article  Google Scholar 

  • Kelejian, H. H., Prucha, I. R. (1999). A generalized moments estimator for the autoregressive parameter in a spatial model. International Economic Review, 40(2), 509–533.

    Article  MathSciNet  Google Scholar 

  • Koenker, R., Bassett, G., Jr. (1978). Regression quantiles. Econometrica, 46(1), 33–50.

    Article  MathSciNet  MATH  Google Scholar 

  • Kong, E., Xia, Y. (2012). A single-index quantile regression model and its estimation. Econometric Theory, 28(4), 730–768.

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, L. F. (2004). Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models. Econometrica, 72(6), 1899–1925.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, T., Guo, Y. (2020). Penalized profile quasi-maximum likelihood method of partially linear spatial autoregressive model. Journal of Statistical Computation and Simulation, 90(15), 2705–2740.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, T., Yin, Q., Peng, J. (2020). Variable selection of partially linear varying coefficient spatial autoregressive model. Journal of Statistical Computation and Simulation, 90(15), 2681–2704.

    Article  MathSciNet  MATH  Google Scholar 

  • Luo, G., Wu, M. (2021). Variable selection for semiparametric varying-coefficient spatial autore-gressive models with a diverging number of parameters. Communications in Statistics-Theory and Methods, 50(9), 2062–2079.

    Article  MathSciNet  MATH  Google Scholar 

  • Ord, K. (1975). Estimation methods for models of spatial interaction. Journal of the American Statistical Association, 70(349), 120–126.

    Article  MathSciNet  MATH  Google Scholar 

  • Schumaker, L. (1981). Spline functions: Basic theory. New York: Wiley.

    MATH  Google Scholar 

  • Song, Y., Liang, X., Zhu, Y., et al. (2021). Robust variable selection with exponential squared loss for the spatial autoregressive model. Computational Statistics and Data Analysis, 155, 107094.

    Article  MathSciNet  MATH  Google Scholar 

  • Su, L., Jin, S. (2010). Profile quasi-maximum likelihood estimation of partially linear spatial autoregressive models. Journal of Econometrics, 157(1), 18–33.

    Article  MathSciNet  MATH  Google Scholar 

  • Su, L., Yang, Z. (2007). Instrumental variable quantile estimation of spatial autoregressive models. In Development economics working papers 22476, East Asian Bureau of Economic Research. https://ideas.repec.org/p/eab/develo/22476.html.

  • Wang, H., Li, G., Jiang, G. (2007). Robust regression shrinkage and consistent variable selection through the LAD-Lasso. Journal of Business & Economic Statistics, 25(3), 347–355.

    Article  MathSciNet  Google Scholar 

  • Wang, K., Lin, L. (2016). Robust structure identification and variable selection in partial linear varying coefficient models. Journal of Statistical Planning and Inference, 174, 153–168.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, X., Jiang, Y., Huang, M., et al. (2013). Robust variable selection with exponential squared loss. Journal of the American Statistical Association, 108(502), 632–643.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao, P., Gan, H., Cheng, S., et al. (2021). Orthogonality based penalized GMM estimation for variable selection in partially linear spatial autoregressive models. Communications in Statistics-Theory and Methods, 52, 1676–1691.

    Article  MathSciNet  MATH  Google Scholar 

  • Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101(476), 1418–1429.

    Article  MathSciNet  MATH  Google Scholar 

  • Zou, H., Yuan, M. (2008). Composite quantile regression and the oracle model selection theory. The Annals of Statistics, 36(3), 1108–1126.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research is supported by NSF projects (ZR2021MA077 and ZR2021MA048) of Shandong Province of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 1

Let \(\xi = n^{-1/2} + a_n\). Similar to Fan and Li (2001), we first prove that for any given \(\epsilon > 0\), there exists a constant C such that

$$\begin{aligned} P\left\{ \sup \limits _{\Vert {{\textbf {u}}}\Vert = C} \ell (\theta _0 + \xi {{\textbf {u}}}) < \ell (\theta _0) \right\} \ge 1 - \epsilon , \end{aligned}$$
(18)

where \({{\textbf {u}}}\) is a \((p+1)\)-dimensional vector such that \(\Vert {{\textbf {u}}}\Vert = C\), and C is a large enough constant. This means that the probability that there exists a local maximum in the sphere \(\{\theta _0 + \xi {{\textbf {u}}} : \Vert {{\textbf {u}}}\Vert \le C \}\) is at least \(1 - \epsilon\). Hence, we prove that there exists a local maximizer \({\hat{\theta }}_n\) such that \(\Vert {\hat{\theta }}_n - \theta _0\Vert = O_p(\xi )\). Let

$$\begin{aligned} D(\theta , \gamma ) = \sum _{i=L+1}^n \exp \left\{ -({\tilde{Y}}_i - {\tilde{Z}}_i^T \theta )^2 / \gamma \right\} \frac{2({\tilde{Y}}_i - {\tilde{Z}}_i^T \theta )}{\gamma } {\tilde{Z}}_i . \end{aligned}$$

Since \(p_{\lambda _j}(0)=0\) for \(j = 1,\ldots , p+1\) and \(\gamma _n - \gamma _0 =o_p(1)\) , by Taylor’s expansion we have

$$\begin{aligned}&\ell (\theta _0 + \xi {{\textbf {u}}}) - \ell (\theta _0)\nonumber \\&\quad =\sum _{i=L+1}^n \exp \left\{ -\frac{({\tilde{Y}}_i - {\tilde{Z}}_i^T(\theta _0 + \xi {{\textbf {u}}}))^2}{\gamma _n} \right\} - \sum _{i=L+1}^n \exp \left\{ -\frac{({\tilde{Y}}_i - {\tilde{Z}}_i^T\theta _0)^2}{\gamma _n} \right\} \nonumber \\&\qquad - (n-L) \sum _{j=1}^{p+1} \{ p_{\lambda _j}(|\theta _{0j} + \xi _j|) - p_{\lambda _j}(|\theta _{0j}|)\} \nonumber \\&\quad \le \sum _{i=L+1}^n \exp \left\{ -\frac{({\tilde{Y}}_i - {\tilde{Z}}_i^T(\theta _0 + \xi {{\textbf {u}}}))^2}{\gamma _n} \right\} - \sum _{i=L+1}^n \exp \left\{ -\frac{({\tilde{Y}}_i - {\tilde{Z}}_i^T\theta _0)^2}{\gamma _n} \right\} \nonumber \\&\qquad - (n-L) \sum _{j=1}^{s} \{ p_{\lambda _j}(|\theta _{0j} + \xi _j|) - p_{\lambda _j}(|\theta _{0j}|)\} \nonumber \\&\quad = \xi D(\theta _0, \gamma _n)^T {{\textbf {u}}} -\frac{1}{2} {{\textbf {u}}}^T[- I(\theta _0, \gamma _n) ] {{\textbf {u}}} (n-L) \xi ^2\{1+o(1) \} \nonumber \\&\qquad - \sum _{j=1}^s[(n-L) \xi p_{\lambda _j}'(|\theta _{0j}|) \textrm{sign}(\theta _{0j}) u_j + (n-L) \xi ^2 p_{\lambda _j}''(|\theta _{0j}|) u_j^2\{1+o(1) \} ] \nonumber \\&\quad = \xi \{D(\theta _0, \gamma _0) + o_p( \sqrt{n} )\}^T {{\textbf {u}}} -\frac{1}{2} {{\textbf {u}}}^T[- I(\theta _0, \gamma _0) +o(1) ] {{\textbf {u}}} (n-L) \xi ^2\{1+o(1) \} \nonumber \\&\qquad - \sum _{j=1}^s[(n-L) \xi p_{\lambda _j}'(|\theta _{0j}|) \textrm{sign}(\theta _{0j}) u_j + (n-L) \xi ^2 p_{\lambda _j}''(|\theta _{0j}|) u_j^2\{1+o(1) \} ] \nonumber \\&\quad \le \xi \{D(\theta _0, \gamma _0) + o_p( \sqrt{n}) )\}^T {{\textbf {u}}} -\frac{1}{2} {{\textbf {u}}}^T[- I(\theta _0, \gamma _0) +o(1) ] {{\textbf {u}}} (n-L) \xi ^2\{1+o(1) \} \nonumber \\&\qquad -[ \sqrt{s} (n-L) \xi a_n \Vert {{\textbf {u}}}\Vert + (n-L)\xi ^2b_n\Vert {{\textbf {u}}}\Vert ^2 ] . \end{aligned}$$
(19)

Note that \(n^{-1/2} D(\theta _0, \gamma _0)=O_p(1)\). Therefore, the order of the first term on the right side of Eq. (18) is equal to \(O_p(n^{1/2} \xi ) = O_p(n \xi ^2)\). By choosing a sufficiently large C, the second term dominates the first term uniformly in \(\Vert {{\textbf {u}}}\Vert = C\). Since \(b_n=o_p(1)\), the third term is also dominated by the second term of (18). Therefore, (17) holds by choosing a sufficiently large C. The proof of Theorem 1 is completed. \(\square\)

Proof of Theorem 2(a)

We now prove the sparsity. We will prove that with probability 1, for any \(\theta _1\) satisfying \(\theta _1-\theta _{01} = O_p(n^{-1/2})\), and for some small \(\epsilon _n = Cn^{-1/2}\) and \(j=s+1,\ldots , p+1\), we have \(\partial \ell (\theta )/ \partial \theta _j >0\), for \(0<\theta _j<\epsilon _n\), and \(\partial \ell (\theta )/ \partial \theta _j <0\), for \(-\epsilon _n<\theta _j<0\). Let

$$\begin{aligned} Q_n(\theta ,\gamma )= \sum _{i=L+1}^n \exp \left\{ -({\tilde{Y}}_i - {\tilde{Z}}_i^T \theta )^2 / \gamma \right\} . \end{aligned}$$
(20)

By Talylor’s expansion, we have

$$\begin{aligned}&\frac{ \partial \ell (\theta )}{\partial \theta _j} = \frac{ \partial Q_n(\theta ,\gamma _n)}{\partial \theta _j} - (n-L)p_{\lambda _{j}}'(|\theta _{j}|)\textrm{sign}(\theta _{j}) \\&\quad = \frac{ \partial Q_n(\theta _0,\gamma _n)}{\partial \theta _j} + \sum _{l=1}^{p+1} \frac{ \partial ^2 Q_n(\theta _0,\gamma _n)}{\partial \theta _j \partial \theta _l }(\theta _l - \theta _{0l}) \\&\qquad + \sum _{l=1}^{p+1} \sum _{k=1}^{p+1} \frac{ \partial ^3 Q_n(\theta ^*,\gamma _n)}{\partial \theta _j \partial \theta _l \partial \theta _k}(\theta _l - \theta _{0l})(\theta _k - \theta _{0k}) - (n-L)p_{\lambda _{j}}'(|\theta _{j}|)\textrm{sign}(\theta _{j}), \end{aligned}$$

where \(\theta ^*\) lies between \(\theta\) and \(\theta _0\). Here we assume \(\left| (n-L)^{-1}\frac{ \partial ^3 Q_n(\theta ,\gamma _n)}{\partial \theta _j \partial \theta _l \partial \theta _k} \right| \le M_{jlk}\), where \(E(M_{jlk}) < \infty\). Note that

$$\begin{aligned}&(n-L)^{-1/2} \frac{ \partial Q_n(\theta _0,\gamma _0)}{\partial \theta _j} = O_p(1), \\&(n-L)^{-1} \frac{ \partial ^2 Q_n(\theta _0,\gamma _0)}{\partial \theta _j \partial \theta _l } =E\left\{ \frac{ \partial ^2 Q_n(\theta _0)}{\partial \theta _j \partial \theta _l } \right\} +o_p(1) , \end{aligned}$$

and

$$\begin{aligned} (n-L)^{-1}\frac{ \partial ^3 Q_n(\theta ^*,\gamma _n)}{\partial \theta _j \partial \theta _l \partial \theta _k} = O_p(1). \end{aligned}$$

Since \(b_n = o_p(1)\) and \(\sqrt{n}a_n = o_p(1)\), we obtain \(\theta - \theta _0 = O_p(n^{-1/2})\). By \(\sqrt{n}(\gamma _n-\gamma _0) = o_p(1)\), we have

$$\begin{aligned} \frac{ \partial \ell (\theta )}{\partial \theta _j} = (n-L) \lambda _j \left\{ -\lambda _j^{-1} p_{\lambda _{j}}'(|\theta _{j}|)\textrm{sign}(\theta _{j})+O_p((n-L)^{-1/2}/\lambda _j) \right\} . \end{aligned}$$

Since \(\frac{1}{\min _{s+1 \le j \le p+1} \sqrt{n}\lambda _j } =o_p(1)\) and \(\lim \inf _{n\rightarrow \infty } \lim \inf _{t\rightarrow 0^+} \lambda ^{-1} p_{\lambda }'(|t|) >0\) with probability 1, the sign of the derivative is completely determined by that of \(\theta _j\). This completes the proof of Theorem 2(a).

Proof of Theorem 2(b)

It can be shown easily that there exists a \({\hat{\theta }}_{n1}\) in Theorem 1 that is a \(\sqrt{n}\)-consistent local maximizer of \(\ell \{(\theta _1,0)\}\), satisfying that

$$\begin{aligned} \frac{ \partial \ell \{({\hat{\theta }}_{n1},0)\}}{\partial \theta _j} =0, \quad \textrm{for} \, j=1,\ldots ,s. \end{aligned}$$
(21)

Note that \({\hat{\theta }}_{n1}\) is a consistent estimator,

$$\begin{aligned}&\frac{ \partial Q_n\{({\hat{\theta }}_{n1},0), \gamma _n\}}{\partial \theta _j} - (n-L) p_{\lambda _{j}}'(|\theta _{j}|)\textrm{sign}(\theta _{j}) \\&\quad = \frac{ \partial Q_n(\theta _0,\gamma _n)}{\partial \theta _j} + \sum _{l=1}^{s} \left\{ \frac{ \partial ^2 Q_n(\theta _0,\gamma _n)}{\partial \theta _j \partial \theta _l } + o_p(1) \right\} ({\hat{\theta }}_l - \theta _{0l}) \\&\qquad - (n-L) \left[ p_{\lambda _{j}}'(|\theta _{0j}|)\textrm{sign}(\theta _{0j}) + \left\{ p_{\lambda _{j}}''(|\theta _{0j}|) +o_p(1) \right\} ({\hat{\theta }}_j - \theta _{0j}) \right] =0 . \end{aligned}$$

The above equation can be rewritten as follows

$$\begin{aligned} \frac{ \partial Q_n(\theta _0,\gamma _n)}{\partial \theta _j}&= \sum _{l=1}^{s} \left\{ E \left\{ - \frac{ \partial ^2 Q_n(\theta _0,\gamma _n)}{\partial \theta _j \partial \theta _l }\right\} + o_p(1) \right\} (n-L)({\hat{\theta }}_l - \theta _{0l}) \\&\qquad +(n-L)\varDelta +(n-L)(\varSigma _1 + O_p(1) )({\hat{\theta }}_{n1} - \theta _{01}), \end{aligned}$$

and

$$\begin{aligned}&(n-L) I_1(\theta _{01},\gamma _0)({\hat{\theta }}_{n1} - \theta _{01}) +(n-L)\varDelta +(n-L)(\varSigma _1 + O_p(1) )({\hat{\theta }}_{n1} - \theta _{01}) \\&\quad =(n-L) (I_1(\theta _{01},\gamma _0)+ \varSigma _1 )({\hat{\theta }}_{n1} - \theta _{01}) +(n-L)\varDelta \\&\quad =(n-L) (I_1(\theta _{01},\gamma _0)+ \varSigma _1 ) \{({\hat{\theta }}_{n1} - \theta _{01}) + (I_1(\theta _{01},\gamma _0)+ \varSigma _1 )^{-1}\varDelta \} \\&\quad =\frac{ \partial Q_n(\theta _0,\gamma _n)}{\partial \theta _j} + o_p(1). \end{aligned}$$

Since \(\sqrt{n}(\gamma _n- \gamma _0)=o_p(1)\), invoking the Slutsky’s lemma and the Lindeberg-Feller central limit theorem, we have

$$\begin{aligned} \sqrt{n-L} (I_1(\theta _{01},\gamma _0)+ \varSigma _1 ) \{({\hat{\theta }}_{n1} - \theta _{01}) + (I_1(\theta _{01},\gamma _0)+ \varSigma _1 )^{-1}\varDelta \} \rightarrow N({{\textbf {0}}},\varSigma _2), \end{aligned}$$

where \(\varSigma _1 = {\text {diag}}\{p_{\lambda _{j}}''(|\theta _{01}|) ,\ldots , p_{\lambda _{j}}''(|\theta _{0s}|) \}\), \(\varSigma _2 = \textrm{Cov}(\exp (-r^2/\gamma _0)\frac{2r}{\gamma _0} {\tilde{Z}}_{i1})\), \(\varDelta = (p_{\lambda _{j}}'(|\theta _{01}|)\textrm{sign}(\theta _{01}),\ldots , p_{\lambda _{j}}'(|\theta _{0s}|)\textrm{sign}(\theta _{0s}) )^T\), and \(I_1(\theta _{01},\gamma _0) = \frac{2}{\gamma _0} E[\exp (-r^2/\gamma _0)( \frac{2r^2}{\gamma _0}\) \(-1) ] \times (E{\tilde{Z}}_{i1}{\tilde{Z}}_{i1}^T)\). Then the proof of Theorem 2(b) is completed. \(\square\)

Proof of Theorem 3

Let that \(R(U_i) = g(U_i)-B(U_i)^T \eta\) and \(R(U) = (R(U_1), \ldots ,\) \(R(U_n))^T\). To facilitate expression, we set \(Z = (WY, X), g(U) =(g(U_1), \ldots , g(U_n))^T\). Similar to Zhao et al. (2021), a simple calculation gives that

$$\begin{aligned}&{\hat{\eta }} - \eta =(S^T S)^{-1} S^T(Y - Z{\hat{\theta }}_n ) - \eta \nonumber \\&\quad =(S^T S)^{-1} S^T(Z\theta _0 + g(U) + \epsilon - Z{\hat{\theta }}_n ) - \eta \nonumber \\&\quad =(S^T S)^{-1} S^T(Z\theta _0 +g(U) - S\eta +S\eta +\epsilon - Z{\hat{\theta }}_n) - \eta \nonumber \\&\quad =(S^T S)^{-1} S^T(Z\theta _0 + R(U) + S\eta + \epsilon - Z{\hat{\theta }}_n) - \eta \nonumber \\&\quad =(S^T S)^{-1} S^T(Z(\theta _0 - {\hat{\theta }}_n) + R(U) + \epsilon +S\eta ) -\eta \nonumber \\&\quad =(S^T S)^{-1} S^TR(U) + (S^T S)^{-1} S^T\epsilon +(S^T S)^{-1} S^TZ(\theta _0 - {\hat{\theta }}_n) \nonumber \\&\quad =R_1 + R_2 + R_3 . \end{aligned}$$
(22)

By \(\Vert R(u)\Vert =O(n^{-v/(2v+1)})\), we have

$$\begin{aligned} \Vert R_1\Vert \le \left( \frac{1}{n}\sum _{i=1}^n \Vert B(U_i) B(U_i)^T \Vert \right) ^{-1} \frac{1}{n}\sum _{i=1}^n \Vert B(U_i) R(U_i)\Vert = O_p(n^{-v/(2v+1)}). \end{aligned}$$

Note that \(E\{B(U_i)\epsilon |X_i,U_i\}=0\), then by the central limit theorem we have \(n^{-1/2}\sum _{i=1}^n\) \(B(U_i)\epsilon _i = O_p(1)\). Therefore, we have

$$\begin{aligned} \Vert R_2\Vert \le \frac{1}{\sqrt{n}}\left( \frac{1}{n}\sum _{i=1}^n\Vert B(U_i)B(U_i)^T\Vert \right) ^{-1} \left\| \frac{1}{\sqrt{n}}\sum _{i=1}^n B(U_i)\epsilon _i\right\| =O_p(n^{-1/2}). \end{aligned}$$

By Theorem 1, we have \(\sqrt{n}(\theta -{\hat{\theta }}_n) = O_p(1)\). Similar to the above proof, we can obtain \(\Vert R_3\Vert = O_p(n^{-1/2})\). Hence, we have

$$\begin{aligned} \Vert {\hat{\eta }}-\eta \Vert = O_p(n^{-v/(2v+1)} + n^{-1/2} ) = O_p(n^{-v/(2v+1)}). \end{aligned}$$
(23)

Therefore,

$$\begin{aligned}&\Vert {\hat{g}}(u) - g(u) \Vert ^2 = \int _0^1 \{{\hat{g}}(u)-g(u) \}^2du \nonumber \\&\quad =\int _0^1\{B^T(u) {\hat{\eta }} - B^T(u)\eta +R(u) \}^2du \nonumber \\&\quad \le 2 \int _0^1\{B^T(u) {\hat{\eta }} - B^T(u)\eta \}^2du + 2\int _0^1R(u)^2du \nonumber \\&\quad = 2({\hat{\eta }}-\eta )^T \int _0^1B(u)B(u)^Tdu({\hat{\eta }}-\eta ) + 2\int _0^1R(u)^2du , \end{aligned}$$
(24)

Note that \(\Vert \int _0^1B(u)B(u)^Tdu\Vert = O(1)\), and thus invoking (22) gives

$$\begin{aligned} ({\hat{\eta }}-\eta )^T \int _0^1B(u)B(u)^Tdu({\hat{\eta }}-\eta ) = O_p(n^{-2v/(2v+1)}). \end{aligned}$$

From \(\Vert R(u)\Vert =O(n^{-v/(2v+1)})\), we have

$$\begin{aligned} \int _0^1R(u)^2du = O_p(n^{-2v/(2v+1)}). \end{aligned}$$

As a result, \(\Vert {\hat{g}}(u) - g(u) \Vert ^2 = O_p(n^{-2v/(2v+1)})\). This completes the proof of Theorem 3. \(\square\)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Shao, J., Wu, J. et al. Robust variable selection with exponential squared loss for partially linear spatial autoregressive models. Ann Inst Stat Math 75, 949–977 (2023). https://doi.org/10.1007/s10463-023-00870-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-023-00870-w

Keywords

Navigation