Skip to main content
Log in

Automatic data-based bin width selection for rose diagram

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

A rose diagram is a representation that circularly organizes data with the bin width as the central angle. This diagram is widely used to display and summarize circular data. Some studies have proposed the selector of bin width based on data. However, only a few papers have discussed the property of these selectors from a statistical perspective. Thus, this study aims to provide a data-based bin width selector for rose diagrams using a statistical approach. We consider that the radius of the rose diagram is a nonparametric estimator of the square root of two times the circular density. We derive the mean integrated square error of the rose diagram and its optimal bin width and propose two new selectors: normal reference rule and biased cross-validation. We show that biased cross-validation converges to its optimizer. Additionally, we propose a polygon rose diagram to enhance the rose diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abe, T., Pewsey, A. (2011). Sine-skewed circular distributions. Statistical Papers, 52, 683–707.

    Article  MathSciNet  MATH  Google Scholar 

  • Agostinelli, C., Lund, U. (2017). R package circular: Circular Statistics (version 0.4-93), CA: Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University, Venice, Italy. UL: Department of Statistics, California Polytechnic State University, San Luis Obispo, California, USA, https://r-forge.r-project.org/projects/circular/.

  • Andreasen, C. (1990). A suggested standard procedure for the construction of unimodal current rose-diagrams. Journal of Sedimentary Research, 60(4), 628–629.

    Article  Google Scholar 

  • Ballantyne, C., Cornish, R. (1979). Use of the chi-square test for the analysis of orientation data. Journal of Sedimentary Research, 49(3), 773–776.

    Google Scholar 

  • Di Marzio, M., Panzera, A., Taylor, C. C. (2011). Kernel density estimation on the torus. Journal of Statistical Planning and Inference, 141(6), 2156–2173.

    Article  MathSciNet  MATH  Google Scholar 

  • Fisher, N. I. (1993). Statistical analysis of circular data. New York: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Hall, P., Watson, G., Cabrera, J. (1987). Kernel density estimation with spherical data. Biometrika, 74(4), 751–762.

    Article  MathSciNet  MATH  Google Scholar 

  • Kanazawa, Y. (1993). Hellinger distance and Akaike’s information criterion for the histogram. Statistics and Probability Letters, 17(4), 293–298.

    Article  MathSciNet  MATH  Google Scholar 

  • Mardia, K. V. (1972). Statistics of directional data. London: Academic Press.

    MATH  Google Scholar 

  • Mardia, K. V., Jupp, P. E. (2000). Directional statistics. New York: Wiley.

    MATH  Google Scholar 

  • Munro, M. A., Blenkinsop, T. G. (2012). MARD–A moving average rose diagram application for the geosciences. Computers and Geosciences, 49, 112–120.

    Article  Google Scholar 

  • Nemec, W. (1988). The shape of the rose. Sedimentary Geology, 59(1–2), 149–152.

    Article  Google Scholar 

  • Nightingale, F. (1858). Notes on matters affecting the health, efficiency, and hospital administration of the British army. London: Harrison & Sons.

    Google Scholar 

  • Pewsey, A., Neuhäuser, M., Ruxton, G. D. (2013). Circular statistics in R. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • R Core Team (2021). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/.

  • Sanderson, D. J., Peacock, D. C. (2020). Making rose diagrams fit-for-purpose. Earth-Science Reviews, 201, 103055.

    Article  Google Scholar 

  • Scott, D. W. (1979). On optimal and data-based histograms. Biometrika, 66(3), 605–610.

    Article  MathSciNet  MATH  Google Scholar 

  • Scott, D. W. (1985). Frequency polygons: Theory and application. Journal of the American Statistical Association, 80(390), 348–354.

    Article  MathSciNet  MATH  Google Scholar 

  • Scott, D. W. (2015). Multivariate density estimation: Theory, practice, and visualization. Hoboken, New Jersey: Wiley.

    MATH  Google Scholar 

  • Scott, D. W., Terrell, G. R. (1987). Biased and unbiased cross-validation in density estimation. Journal of the American Statistical Association, 82(400), 1131–1146.

    Article  MathSciNet  MATH  Google Scholar 

  • Taylor, C. C. (2008). Automatic bandwidth selection for circular density estimation. Computational Statistics and Data Analysis, 52(7), 3493–3500.

    Article  MathSciNet  MATH  Google Scholar 

  • Tsuruta, Y., Sagae, M. (2017). Higher order kernel density estimation on the circle. Statistics and Probability Letters, 131, 46–50.

    Article  MathSciNet  MATH  Google Scholar 

  • Tsuruta, Y., Sagae, M. (2020). Theoretical properties of bandwidth selectors for kernel density estimation on the circle. Annals of the Institute of Statistical Mathematics, 72(2), 511–530.

    Article  MathSciNet  MATH  Google Scholar 

  • Wells, N. A. (2000). Are there better alternatives to standard rose diagrams? Journal of Sedimentary Research, 70(1), 37–46.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the reviewers for their helpful comments. This work was supported by JSPS KAKENHI Grant Numbers JP20K19760 and JP21K11782.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhito Tsuruta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 209 KB)

Appendices

Appendix A

Proof of Theorem 1

Recalling that \(W_{k}=\hat{f}(\theta ; h_{k}) - \textrm{E}[\hat{f}(\theta ; h_{k}) ]\) for \(\theta \) in \(B_{k}\), the Taylor expansion of the rose diagram estimator \(r_{f}(\theta ;h)\) around \(\textrm{E}[\hat{f}(\theta ; h_{k})]\) is:

$$\begin{aligned} \hat{r}_{f}(\theta ; h) = \sqrt{2\textrm{E}[\hat{f}(\theta ; h_{k})]} + \sum ^{\infty }_{t=1}(-1)^{t-1}\frac{\sqrt{2} (2t-3)!!}{2^{t}t!}\textrm{E}[\hat{f}(\theta ; h_{k})]^{1/2-t} W_{k}^{t}, \end{aligned}$$
(17)

for \(\theta \in B_{k}\), where \((2t-1)!!:=1\cdot 3\cdot 5\cdots (2t - 3)(2t-1)\) and (-1)!!:=1. Combining Lemma 1 and (17), the expectation of the rose diagram estimator approximates to:

$$\begin{aligned} \textrm{E}[\hat{r}_{f}(\theta ; h)] =\sqrt{2p_{k}/h_{k}} +O((nh)^{-1}),\ \theta \in B_{k}. \end{aligned}$$
(18)

Note that \(B_{k}=[t_{k}, t_{k}+h_{k})\). From the Taylor expansion of \(f(\cdot )\) around \(\theta \in B_{k}\), we obtain

$$\begin{aligned} p_{k}&= \int ^{t_{k}+h_{k}}_{t_{k}}f(y)dy \nonumber \\&= \int ^{t_{k}+h_{k}}_{t_{k}}[f(\theta ) + f^{\prime }(\theta )(y-\theta ) + O((y-\theta )^{2})]dy\nonumber \\&= (t_{k} + h_{k})f(\theta ) + f^{\prime }(\theta )(t_{k} + h_{k}-\theta )^{2}/2 + O((t_{k}+h_{k}-\theta )^{3})\nonumber \\&\,\quad -[ t_{k}f(\theta ) + f^{\prime }(\theta )(t_{k}-\theta )^{2}/2 + O((t_{k}-\theta )^{3})]\nonumber \\&=h_{k}f(\theta ) +f^{\prime }(\theta )[h_{k}^{2}/2 +(t_{k} -\theta )h_{k}] +O(h^{3}). \end{aligned}$$
(19)

Approximating \(p_{k}\) in the RHS in Eq. (18) by Eq. (19) leads to:

$$\begin{aligned} \textrm{E}[\hat{r}_{f}(\theta ; h)]&=\sqrt{2}\sqrt{f(\theta ) +f^{\prime }(\theta )(h_{k}/2 +t_{k} -\theta )+O(h^{2})} +O((nh^{-1}))\nonumber \\&= \sqrt{2f(\theta ) }+(2f(\theta ))^{-1/2}f^{\prime }(\theta )(h_{k}/2 + t_{k} -\theta ) +O(h^{2} + (nh)^{-1}) \nonumber \\&=r_{f}(\theta ) + r_{f}^{\prime }(\theta )(h_{k}/2 + t_{k} -\theta ) +O(h^{2} + (nh)^{-1}), \end{aligned}$$
(20)

for \(\theta \in B_{k}\). From (20), we obtain:

$$\begin{aligned} \textrm{Bias}[\hat{r}_{f}(\theta ; h)] = r_{f}^{\prime }(\theta )(h_{k}/2 + t_{k} -\theta ) +O(h^{2} + (nh)^{-1}), \end{aligned}$$
(21)

for \(\theta \in B_{k}\). By applying the mean theorem to the first term in the RHS in Eq. (21), we can obtain \(\eta _{k} \in (t_{k}, t_{k}+h_{k} )\), which satisfies \(\int _{B_{k}} r_{f}^{\prime }(\theta )^{2}(h_{k}/2 + t_{k} -\theta )^{2}d\theta = r_{f}^{\prime }(\eta _{k})^{2}\int _{B_{k}}(h_{k}/2 + t_{k} -\theta )^{2}d\theta \). Thus, we obtain:

$$\begin{aligned} \int _{B_{k}} \textrm{Bias}[\hat{r}_{f}(\theta ; h)] ^{2}d\theta&=r_{f}^{\prime }(\eta _{k})^{2} \int _{B_{k}}(\theta - t_{k} - h_{k}/2)^{2}d\theta [1+o(1)]\nonumber \\&= r_{f}^{\prime }(\eta _{k})^{2}(h_{k}^{3}/12)[1+o(1)]. \end{aligned}$$
(22)

Let \(\textrm{ISB}: = \int ^{2\pi }_{0} \textrm{Bias}[\hat{r}_{f}(\theta ; h)] ^{2}d\theta \). We find that \(\textrm{ISB}\) is the sum of the integrations in \(B_{k}\) in (22) for \(k=1,2,\dots , m\) with \(m: =m_{n}\), such as \(m_{n}\rightarrow \infty \) as \(n \rightarrow \infty \); that is,

$$\begin{aligned} \textrm{ISB}&= \frac{h^{2}}{12} \sum _{k=0}^{m-1}r_{f}^{\prime }(\eta _{k})^{2}h[1+o(1)] + \frac{c^{3}h^{3}}{12}r_{f}^{\prime }(\eta _{m})^{2}[1+o(1)] \nonumber \\&=\frac{h^{2}}{12} \left[ \int ^{2\pi }_{0} r_{f}^{\prime }(\theta )^{2}d \theta - \int ^{2\pi }_{2\pi - ch} r_{f}^{\prime }(\theta )^{2}d \theta + c^{3}hr_{f}^{\prime }(\eta _{m})^{2}\right] [1+o(1)]\nonumber \\&= \frac{h^{2}}{12} \int ^{2\pi }_{0} r_{f}^{\prime }(\theta )^{2}d \theta [1+o(1)] , \end{aligned}$$
(23)

where we use the Riemann integral approximation in the second RHS and \(\int ^{2\pi }_{2\pi - ch} r_{f}^{\prime }(\theta )^{2}d \theta - chr_{f}^{\prime }(\eta _{m})^{2} = o(1)\) in the last RHS. From Lemma 1 and (17), we obtain:

$$\begin{aligned} \textrm{Var}[\hat{r}_{f}(\theta ;h)]&= \textrm{Var}[ 2^{-1/2} \textrm{E}[\hat{f}(\theta ;h_{k})]^{-1/2}W_{k} +O_{p}(W_{k}^{2})]\nonumber \\&= (2 \textrm{E}[\hat{f}(\theta ;h_{k})] )^{-1}\textrm{E}[W_{k}^{2}] + O(\textrm{E}[W_{k}^{4}])\nonumber \\&= (2f(\xi _{k}))^{-1}[f(\xi _{k})/(nh_{k})-f(\xi _{k})^{2}/n]+O((nh)^{-2})\nonumber \\&= 1/(2nh_{k}) - f(\xi _{k})/(2n) +O((nh)^{-2}). \end{aligned}$$
(24)

Let \(\textrm{IV}:= \int ^{2\pi }_{0}\textrm{Var}[\hat{r}_{f}(\theta ;h)]d\theta \). Integrating (24) provides:

$$\begin{aligned} \textrm{IV}&= \int ^{2\pi }_{0} \frac{1}{2nh}d\theta - \int ^{2\pi }_{2\pi - ch} \frac{1}{2nh}d\theta + \int ^{2\pi }_{2\pi - ch} \frac{1}{2cnh}d\theta +O(n^{-1} + (nh)^{-2})\nonumber \\&= \pi /(nh) + o((nh)^{-1}). \end{aligned}$$
(25)

Combining (23) and (25) leads to:

$$\begin{aligned} \textrm{MISE}[\hat{r}_{f}(\theta ;h)] = h^{2}R(r_{f}^{\prime })/12 +\pi /(nh) +o(h^{2} +(nh)^{-1}). \end{aligned}$$
(26)

Theorem 1 completes the proof from combining (21), (24), and (26). \(\square \)

Appendix B

We describe the expectation, variance, and covariance of the histogram estimator. We base these proofs on the results in Scott (1979, 1985). We use these to derive the properties of the rose diagram estimator.

The Taylor expansion of f yields:

$$\begin{aligned} p_{k}&= \int ^{t_{k} + h_{k}}_{t_{k}} f(\theta )d\theta \nonumber \\&= \int ^{t_{k} + h_{k} }_{t_{k}} \left[ f(t_{k}) + f^{\prime }(t_{k})(\theta - t_{k}) + \frac{1}{2} f^{\prime \prime }(t_{k})(\theta -t_{k})^{2} + O((\theta - t_{k})^{3} ) \right] d\theta \nonumber \\&= f(t_{k})h_{k} + \frac{1}{2}f^{\prime }(t_{k})h_{k}^{2} + \frac{1}{6} f^{\prime \prime }(t_{k})h_{k}^{3} + O(h^{4}). \end{aligned}$$
(27)

Note that \(p_{k-1} = \int ^{t_{k} }_{t_{k}-h_{k-1}} f(\theta )d\theta \) and \(p_{0} = \int ^{t_{m+1} }_{t_{m+1}-h_{m}}f(\theta )d\theta \). The Taylor expansion of f also yields:

$$\begin{aligned} p_{k-1}&= \left\{ \begin{array}{ll} f(t_{k})h_{k-1} - \frac{1}{2}f^{\prime }(t_{k})h_{k-1}^{2} + \frac{1}{6} f^{\prime \prime }(t_{k})h_{k-1}^{3} + O(h^{4})&{}\text {if}\quad k \in \{2, 3, \dots , m\},\\ f(t_{1})h_{m} - \frac{1}{2}f^{\prime }(t_{1})h_{m}^{2} + \frac{1}{6} f^{\prime \prime }(t_{1})h_{m}^{3} + O(h^{4}),&{}\text {if}\quad k = 1, \end{array}\right. \end{aligned}$$
(28)

where use \(f(t_{m +1}) = f(t_{1})\). From (27), we obtain:

$$\begin{aligned} \textrm{E}[\hat{f}_{k}]&= f(t_{k}) + \frac{1}{2}f^{\prime }(t_{k})h_{k} + \frac{1}{6} f^{\prime \prime }(t_{k})h_{k}^{2} + O(h^{3}), \end{aligned}$$
(29)

and

$$\begin{aligned} \textrm{E}[W_{k}^{2}]&= \left[ f(t_{k})h_{k} + \frac{f^{\prime }(t_{k})h_{k}^{2}}{2} + O(h^{3})\right] \frac{1 - f(t_{k})h_{k}+O(h^{2})}{nh_{k}^{2}} \nonumber \\&=\frac{f(t_{k})}{nh_{k}} + \frac{f^{\prime }(t_{k})}{2n} - \frac{f(t_{k})^{2}}{ n} +O(n^{-1}h). \end{aligned}$$
(30)

From (28), we obtain:

$$\begin{aligned} \textrm{E}[\hat{f}_{k-1}]&= f(t_{k}) - \frac{1}{2}f^{\prime }(t_{k})h_{k-1} + \frac{1}{6} f^{\prime \prime }(t_{k})h_{k-1}^{2} + O(h^{3}), \end{aligned}$$
(31)

and

$$\begin{aligned} \textrm{E}[W_{k-1}^{2}]&= \left\{ \begin{array}{ll} \frac{f(t_{k})}{nh_{k-1}} - \frac{ f^{\prime }(t_{k})}{2n} + \frac{ f(t_{k})^{2}}{n} +O(n^{-1}h)&{} \text {if}\quad k \in \{2, 3, \dots , m\},\\ \frac{f(t_{1})}{nh_{m}} - \frac{ f^{\prime }(t_{1})}{2n} + \frac{ f(t_{1})^{2}}{n} +O(n^{-1}h)&{} \text {if}\quad k = 1. \end{array}\right. \end{aligned}$$
(32)

We know that polynomial distribution’s covariance is \(\textrm{Cov}[v_{k}, v_{k-1}] = -np_{k}p_{k-1}\). Thus, combining (27) and (28) yields

$$\begin{aligned} \textrm{E}[W_{k}W_{k-1} ]&=-\frac{np_{k}p_{k-1}}{n^{2}h_{k}h_{k-1}}\nonumber \\&= -\frac{[f(t_{k})h_{k} + O(h^{2})][f(t_{k})h_{k-1} + O(h^{2})]}{nh_{k}h_{k-1}}\nonumber \\&= - \frac{f(t_{k})^{2}}{n} +O(n^{-1}h), \end{aligned}$$
(33)

where use \(h_{0} = h_{m}\).

Appendix C

Proof of Theorem 2

First, we derive the expectation \(\hat{R}_{1}\). Let the histogram estimator \(\hat{f}(\cdot )\) in bin \(B_{k}\) be \(\hat{f}_{k}\). We obtain:

$$\begin{aligned} \textrm{E}[\hat{R}_{1}]&= 2\sum _{k=1}^{m}\tilde{h}_{k}^{-1}( \textrm{E}[\hat{f}_{k}] + \textrm{E}[\hat{f}_{k-1}] - \textrm{E}[\hat{r}_{k} \hat{r}_{k-1}] ). \end{aligned}$$
(34)

We obtain the following Taylor expansion of \(\hat{r}_{k}\hat{r}_{k-1} \):

$$\begin{aligned} \hat{r}_{k} \hat{r}_{k-1}&= 2(\textrm{E}[\hat{f}_{k}]\textrm{E}[\hat{f}_{k-1}])^{1/2} + \textrm{E}[\hat{f}_{k}]^{-1/2}\textrm{E}[\hat{f}_{k-1}]^{1/2}W_{k} + \textrm{E}[\hat{f}_{k}]^{1/2}\textrm{E}[\hat{f}_{k-1}]^{-1/2}W_{k-1} \nonumber \\&\quad -\frac{1}{4} \textrm{E}[\hat{f}_{k}]^{-3/2}\textrm{E}[\hat{f}_{k-1}]^{1/2}W_{k}^{2} - \frac{1}{4} \textrm{E}[\hat{f}_{k}]^{1/2}\textrm{E}[\hat{f}_{k-1}]^{-3/2}W_{k-1}^{2}\nonumber \\&\quad + \frac{1}{2}\textrm{E}[\hat{f}_{k}]^{-1/2}\textrm{E}[\hat{f}_{k-1}]^{-1/2}W_{k}W_{k-1} + O_{p}((W_{k} + W_{k-1})^{3} + (W_{k} + W_{k-1})^{4}). \end{aligned}$$
(35)

Combining Lemma 1 and (35) yields \(\textrm{E}[\hat{r}_{k} \hat{r}_{k-1} ]\), which is equal to

$$\begin{aligned} \textrm{E}[\hat{r}_{k} \hat{r}_{k-1} ]&= 2(\textrm{E}[\hat{f}_{k}]\textrm{E}[\hat{f}_{k-1}])^{1/2} -\frac{1}{4} \textrm{E}[\hat{f}_{k}]^{-3/2}\textrm{E}[\hat{f}_{k-1}]^{1/2}\textrm{E}[W_{k}^{2}]\nonumber \\&\quad - \frac{1}{4} \textrm{E}[\hat{f}_{k}]^{1/2}\textrm{E}[\hat{f}_{k-1}]^{-3/2}\textrm{E}[W_{k-1}^{2}] + \frac{1}{2}\textrm{E}[\hat{f}_{k}]^{-1/2}\textrm{E}[\hat{f}_{k-1}]^{-1/2}\textrm{E}[W_{k}W_{k-1}]\nonumber \\&\quad + O((nh)^{-2}). \end{aligned}$$
(36)

Combining (34) and (36) provides:

$$\begin{aligned} \textrm{E}[\hat{R}_{1}]&= 2\sum ^{m}_{k=1}\tilde{h}_{k}^{-1}\Bigl [(\textrm{E}[\hat{f}_{k}]^{1/2} - \textrm{E}[\hat{f}_{k-1}]^{1/2})^{2} + \frac{1}{4} \textrm{E}[\hat{f}_{k}]^{-3/2}\textrm{E}[\hat{f}_{k-1}]^{1/2}\textrm{E}[W_{k}^{2}]\nonumber \\&\quad + \frac{1}{4} \textrm{E}[\hat{f}_{k}]^{1/2}\textrm{E}[\hat{f}_{k-1}]^{-3/2}\textrm{E}[W_{k-1}^{2}] - \frac{1}{2}\textrm{E}[\hat{f}_{k}]^{-1/2}\textrm{E}[\hat{f}_{k-1}]^{-1/2}\textrm{E}[W_{k}W_{k-1}]\nonumber \\&\quad + O((nh)^{-2})\Bigr ]. \end{aligned}$$
(37)

We now derive each term in the RHS in Eq. (37). Combining (29) and (31) (in Appendix B) leads to:

$$\begin{aligned}&(\textrm{E}[\hat{f}_{k}]^{1/2} - \textrm{E}[\hat{f}_{k-1}]^{1/2})^{2} \nonumber \\&\quad =\Bigl \{ \Bigl [ f(t_{k}) + \frac{1}{2}f^{\prime }(t_{k})h_{k} + O(h^{2})\Bigr ]^{1/2} - \Bigl [ f(t_{k}) - \frac{1}{2}f^{\prime }(t_{k})h_{k-1}+ O(h^{2})\Bigr ]^{1/2} \Bigr \}^{2}\nonumber \\&\quad = \left\{ f(t_{k})^{1/2} + \frac{1}{4}f(t_{k})^{-1/2}f^{\prime }(t_{k})h_{k} - \left[ f(t_{k})^{1/2} - \frac{1}{4}f(t_{k})^{-1/2}f^{\prime }(t_{k})h_{k-1}\right] + O(h^{2})\right\} ^{2}\nonumber \\&\quad = \left[ \frac{1}{2}f(t_{k})^{-1/2}f^{\prime }(t_{k})\tilde{h}_{k} +O(h^{2}) \right] ^{2} \nonumber \\&\quad = \frac{1}{4}f(t_{k})^{-1}f^{\prime }(t_{k})^{2}\tilde{h}_{k}^{2} + O(h^{3})\nonumber \\&\quad = \frac{1}{2} r_{f}^{\prime }(t_{k})^{2}\tilde{h}_{k}^{2} + O(h^{3}). \end{aligned}$$
(38)

Combining (29), (30), and (31) provides:

$$\begin{aligned} \textrm{E}[\hat{f}_{k}]^{-3/2}\textrm{E}[\hat{f}_{k-1}]^{1/2}\textrm{E}[W_{k}^{2}]&= \frac{[f(t_{k}) + O(h)]^{1/2}}{[f(t_{k}) + O(h)]^{3/2}}\left[ \frac{f(t_{k})}{nh_{k}} + O(n^{-1})\right] \nonumber \\&= \frac{1}{nh_{k}} + O(n^{-1}). \end{aligned}$$
(39)

Combining (29), (31), and (32) provides:

$$\begin{aligned} \textrm{E}[\hat{f}_{k}]^{1/2}\textrm{E}[\hat{f}_{k-1}]^{-3/2}\textrm{E}[W_{k-1}^{2}]&= \frac{1}{nh_{k-1}} + O(n^{-1}). \end{aligned}$$
(40)

Combining (29), (31), and (33) provides:

$$\begin{aligned} \textrm{E}[\hat{f}_{k}]^{-1/2}\textrm{E}[\hat{f}_{k-1}]^{-1/2}\textrm{E}[W_{k}W_{k-1}]&= -\frac{f(t_{k})}{n} + O(n^{-1}h). \end{aligned}$$
(41)

By combining (37), (38), (39), (40), and (41), we obtain:

$$\begin{aligned} \textrm{E}[\hat{R}_{1}]&= 2\sum _{k=1}^{m}\tilde{h}_{k}^{-1}\left[ \frac{1}{2}r_{f}^{\prime }(t_{k})^{2}\tilde{h}_{k}^{2} +\frac{1}{4nh_{k}} + \frac{1}{4nh_{k-1}}+ O(h^{3} + n^{-1} + (nh)^{-2})\right] \nonumber \\&= \left[ \sum _{k=1}^{m}r_{f}^{\prime }(t_{k})^{2}\tilde{h}_{k} + \sum _{k=1}^{m}\frac{1}{2nh_{k}\tilde{h}_{k}} + \sum _{k=1}^{m}\frac{1}{2nh_{k-1}\tilde{h}_{k}} \right] [1 + o(1)] \nonumber \\&= \left[ \int ^{2\pi }_{0}r_{f}^{\prime }(\theta )^{2}d\theta + \sum _{k=2}^{m-1} \frac{1}{nh^{2}} + \frac{2}{n(h^{2} + ch^{2})} + \frac{2}{n(ch^{2} + c^{2}h^{2})}\right] [1 + o(1)] \nonumber \\&= R(r_{f}^{\prime })[1+o(1)] + \left[ \frac{2\pi - (1 + c)h}{nh^{3}} + \frac{2}{n(h^{2} + ch^{2})} + \frac{2}{n(ch^{2} + c^{2}h^{2})} \right] [1+o(1)]\nonumber \\&= R(r_{f}^{\prime }) + \frac{2\pi }{nh^{3}} + o(1 + n^{-1}h^{-3}). \end{aligned}$$
(42)

From (42), we obtain:

$$\begin{aligned} \textrm{E}[\textrm{BCV}(h)]&=\frac{h^{2}}{12}\ \left\{ \textrm{E}[\hat{R}_{1}]-\frac{2\pi }{nh^{3}} \right\} + \frac{\pi }{nh} \nonumber \\&= \frac{h^{2}R(r^{\prime }_{f}) }{12} + \frac{\pi }{nh} + o(h^{2} + (nh)^{-1})\nonumber \\&= \textrm{AMISE}[\hat{r}_{f}(\theta ;h)] + o(h^{2} + (nh)^{-1}). \end{aligned}$$
(43)

We reduce \(\hat{R}_{1}\) to the simpler form. Recalling that \(B_{0} =B_{m}\) implies \(v_{0} = v_{m}\) and \(h_{0} = h_{m}\), we obtain:

$$\begin{aligned} \hat{R}_{1}&= \sum _{k=1}^{m}(2\hat{f}_{k} + 2\hat{f}_{k-1} -2\hat{r}_{k}\hat{r}_{k-1})\tilde{h}_{k}^{-1}\nonumber \\&= 2\left[ \sum _{k=2}^{m-1}\frac{v_{k}}{nh^{2}} + \sum _{k=2}^{m-1}\frac{v_{k-1}}{nh^{2}} + \frac{v_{1}}{nh\tilde{h}_{1}} + \frac{v_{m}}{nh_{m}\tilde{h}_{m}} + \frac{v_{0}}{nh_{0}\tilde{h}_{1}} - \frac{v_{m-1}}{nh\tilde{h}_{m}} - \sum _{k=1}^{m}\tilde{h}_{k}^{-1}\hat{r}_{k}\hat{r}_{k-1} \right] \nonumber \\&= 2 \Bigl \{2 \sum _{k=1}^{m}\frac{v_{k}}{nh^{2}} + \left[ \frac{2}{(1+c)h}-\frac{1}{h}\right] (\hat{f}_{1}+\hat{f}_{m-1}) + 2\left[ \frac{2}{c(1+c)h}-\frac{1}{h}\right] \hat{f}_{m}\nonumber \\&\quad - \sum _{k=1}^{m}\tilde{h}_{k}^{-1}\hat{r}_{k}\hat{r}_{k-1} \Bigr \}\nonumber \\&= \frac{4}{h^{2}} + \frac{2a(c)}{h}(\hat{f}_{1}+\hat{f}_{m-1}) + \frac{4b(c)}{h}\hat{f}_{m} - 2 \sum _{k=1}^{m}\tilde{h}_{k}^{-1}\hat{r}_{k}\hat{r}_{k-1}, \end{aligned}$$
(44)

where \(a(c): = (1 - c) / (1+c)\) and \(b(c): = [2 -(c+c^{2})] /(c+c^{2})\). Next, we provide the variance of \(\textrm{BCV}(h)\). By combining (11) and (44), we reduce \(\textrm{BCV}(h)\) to

$$\begin{aligned} \textrm{BCV}(h)&= \frac{1}{3} + \frac{5\pi }{6nh} +\frac{ha(c)}{6}(\hat{f}_{1}+\hat{f}_{m-1}) + \frac{hb(c)}{3}\hat{f}_{m} - \frac{h^{2}}{6}\sum _{k=1}^{m}\tilde{h}_{k}^{-1}\hat{r}_{k}\hat{r}_{k-1}. \end{aligned}$$
(45)

Let \(Y_{k, k-1}:= \hat{r}_{k}\hat{r}_{k-1} -\textrm{E}[\hat{r}_{ k}\hat{r}_{k-1}]\). Then, from (45), we obtain:

$$\begin{aligned} \textrm{Var}[\textrm{BCV}(h) ]&= \frac{h^{4}}{36}\sum _{k = 1}^{m}\tilde{h}_{k}^{-2}\textrm{E}[Y_{k, k-1}^{2}] + \frac{h^{2}a(c)^{2}}{36}(\textrm{E}[W_{1}^{2}] + \textrm{E}[W_{m-1}^{2}]) + \frac{h^{2}b(c)^{2}}{9}\textrm{E}[W_{m}^{2}]\nonumber \\&\quad -\frac{h^{3}a(c)}{18}\sum _{k = 1}^{m}\tilde{h}_{k}^{-1}(\textrm{E}[W_{1}Y_{k, k-1}] + \textrm{E}[W_{m-1}Y_{k, k-1}] ) -\frac{h^{3}b(c)}{9}\sum _{k=1}^{m}\tilde{h}_{k}^{-1}\textrm{E}[W_{m}Y_{k, k-1}]\nonumber \\&\quad + \frac{h^{4}}{18}\sum _{k < l}\tilde{h}_{k}^{-1}\tilde{h}_{l}^{-1}\textrm{E}[Y_{k, k-1}Y_{l, l-1}] + \frac{h^{2}a(c)^{2}}{18}\textrm{E}[W_{1}W_{m-1}]\nonumber \\&\quad +\frac{h^{2}a(c)b(c)}{9}(\textrm{E}[W_{1}W_{m}] + \textrm{E}[W_{m-1}W_{m}]). \end{aligned}$$
(46)

Combining (35) and (36) provides the following approximations of \(Y_{k, k-1}\):

$$\begin{aligned} Y_{k, k-1}&= \textrm{E}[\hat{f}_{k}]^{-1/2}\textrm{E}[\hat{f}_{k-1}]^{1/2}W_{k} + \textrm{E}[\hat{f}_{k}]^{1/2}\textrm{E}[\hat{f}_{k-1}]^{-1/2}W_{k-1} \nonumber \\&\quad -\frac{1}{4} \textrm{E}[\hat{f}_{k}]^{-3/2}\textrm{E}[\hat{f}_{k-1}]^{1/2}(W_{k}^{2} -\textrm{E}[ W_{k}^{2}] )- \frac{1}{4} \textrm{E}[\hat{f}_{k}]^{1/2}\textrm{E}[\hat{f}_{k-1}]^{-3/2}(W_{k-1}^{2} - \textrm{E}[ W_{k-1}^{2}])\nonumber \\&\quad + \frac{1}{2}\textrm{E}[\hat{f}_{k}]^{-1/2}\textrm{E}[\hat{f}_{k-1}]^{-1/2}(W_{k}W_{k-1} -\textrm{E}[W_{k}W_{k-1}])\nonumber \\&\quad + O_{p}((W_{k} + W_{k-1})^{3} + (W_{k} + W_{k-1})^{4}) + O((nh)^{-2}). \end{aligned}$$
(47)

By combining, (29), (30), (31), (32) (33), and (47) we obtain the following simple form:

$$\begin{aligned} Y_{k, k-1}&= [1 + O(h)](W_{k} + W_{k-1}) + O_{p}( (W_{k} + W_{k-1} )^{2}) + O( (nh)^{-1}). \end{aligned}$$
(48)

Combining, (30), (32) (33), and (48) yields:

$$\begin{aligned} \textrm{E}[Y_{k, k-1}^{2} ]&=[1 + O(h)]^{2}( \textrm{E}[W_{k}^{2}] + \textrm{E}[W_{k-1}^{2}] + \textrm{E}[W_{k}W_{k-1}]) + O((nh)^{-2})\nonumber \\&=\frac{f(t_{k})}{nh_{k}} + \frac{f(t_{k})}{nh_{k-1}} + O(n^{-1} + (nh)^{-2}), \end{aligned}$$
(49)

where \(h_{0} = h_{m}\). Using the same method as (33), we show that \(\textrm{E}[W_{k}W_{l}] =O(n^{-1})\) for any \(k \ne l\). Therefore, combining this, (30), and (48) yields the following covariances:

$$\begin{aligned} \textrm{E}[W_{j}Y_{k,k-1}]&= \textrm{E}\left[ [1 + O(h)](W_{j}W_{k} + W_{j}W_{k-1} ) + O_{p}(W_{j}(W_{k} + W_{k-1})^{2} ) \right] \nonumber \\&= [1 + O(h)]( \textrm{E}[W_{j}W_{k} ] + \textrm{E}[W_{j}W_{k-1} ] )\nonumber \\&={\left\{ \begin{array}{ll} f(t_{j})(nh_{j})^{-1} + O(n^{-1}) &{} \text {if}\, k = j\,\text { or}\, k = j + 1,\\ O(n^{-1}) &{} \text {otherwise}, \end{array}\right. } \end{aligned}$$
(50)

for \(j \in \{1, 2, \dots , m\} \),

$$\begin{aligned} \textrm{E}[W_{m}Y_{k,k-1}]&={\left\{ \begin{array}{ll} f(t_{m})(nh_{m})^{-1} + O(n^{-1}) &{} \text {if}\, k = m\,\text { or}\, k =1,\\ O(n^{-1}) &{} \text {otherwise}, \end{array}\right. } \end{aligned}$$
(51)

and

$$\begin{aligned} \textrm{E}[Y_{k, k-1}, Y_{l, l-1} ]&=[1 + O(h)]^{2}( \textrm{E}[W_{k}W_{l}] + \textrm{E}[W_{k}W_{l-1}] + \textrm{E}[W_{k-1}W_{l}] + \textrm{E}[W_{k-1}W_{l-1}])\nonumber \\&\quad + O( (nh)^{-2}) \nonumber \\&= O(n^{-1} + (nh)^{-2}). \end{aligned}$$
(52)

Combining (33) and (52) demonstrates that the magnitude of the sixth, seventh, and eighth terms in the RHS in (46) is \(O(n^{-1}h^{2})\). This indicates that these terms are ignored. Therefore, by combining (30), (32), (46), (49), (50), and (51), we obtain:

$$\begin{aligned} \textrm{Var}[\textrm{BCV}(h) ]&= \frac{h^{4}}{36} \left[ 2\sum _{k=2}^{m-1}\frac{f(t_{k})}{nh^{3}} + \frac{f(t_{1})}{nh\tilde{h}_{1}^{2}} + \frac{f(t_{m})}{nh_{m}\tilde{h}_{m}^{2}} +\frac{f(t_{m})}{nh\tilde{h}_{m}^{2}} + \frac{f(t_{1})}{nh^{2}\tilde{h}_{m}} +O(n^{-1} + (nh)^{-2}) \right] \nonumber \\&\quad + \frac{h^{2}a(c)^{2}}{36}\left[ \frac{f(t_{1})}{nh} + \frac{f(t_{m-1})}{nh}\right] + \frac{h^{2}b(c)^{2}}{9} \frac{f(t_{m})}{nh_{m}} \nonumber \\&\quad - \frac{h^{2}a(c)}{18}\left[ 2\frac{f(t_{1})}{nh} + \frac{f(t_{m-1})}{nh} + \frac{f(t_{m-1})}{nch}\right] \nonumber \\&\quad - \frac{h^{3}b(c)}{9}\left[ \frac{f(t_{m})}{nh_{m}\tilde{h}_{m}} + \frac{f(t_{m})}{nh\tilde{h}_{m}}\right] + O(n^{-1}h^{2})\nonumber \\&= \frac{1}{18n}\int ^{2\pi - ch}_{h}f(\theta )d\theta [1+o(1)]\nonumber \\&= \frac{1}{18n} + o(n^{-1}). \end{aligned}$$
(53)

Theorem 2 completes the proof from (43) and (53). \(\square \)

Appendix D

Proof of Corollary 2

We denote the MISE and the asymptotic MISE of the rose diagram estimator as \(\textrm{MISE}(h)\) and \(\textrm{AMISE}(h)\), respectively. From (5), we obtain:

$$\begin{aligned} \textrm{AMISE}(h)/\textrm{MISE}(h) \xrightarrow {p} 1. \end{aligned}$$
(54)

From combining Theorem 2 and the law of large numbers, we obtain:

$$\begin{aligned} \textrm{BCV}(h)/\textrm{AMISE}(h) \xrightarrow {p} 1. \end{aligned}$$
(55)

Let \(h_{*} = h_{\textrm{opt}} \) and \(\gamma := \hat{h}_{\textrm{BCV}}/h_{*}\) We find that (54) and (55) hold for all h. Therefore, we obtain:

$$\begin{aligned} \textrm{AMISE}(\gamma h_{*})/\textrm{MISE}(\gamma h_{*}) \xrightarrow {p} 1, \end{aligned}$$
(56)

and

$$\begin{aligned} \textrm{BCV}(\gamma h_{*})/\textrm{MISE}(\gamma h_{*}) \xrightarrow {p} 1. \end{aligned}$$
(57)

The ratio of the AMISE of bin width \(\gamma h_{*}\) to that of bin width \(h_{*}\) is a function expressed in the following equation:

$$\begin{aligned} \textrm{AMISE}(\gamma h_{*})/\textrm{AMISE}(h_{*}) = \frac{\gamma ^{2}}{3} + \frac{2}{3\gamma } . \end{aligned}$$
(58)

The ratio in (58) is a convex function with minimum value at \(\gamma =1\).Thus, if \(\gamma \ne 1\) and n is sufficiently large, from (56), we obtain:

$$\begin{aligned} \textrm{MISE}(\gamma h_{*})>\textrm{MISE}(h_{*}). \end{aligned}$$
(59)

Suppose that \(\gamma \) does not converge to 1.If n is sufficiently large, then \(\textrm{BCV}(h)\) is a convex function with a minimum at \(h =\gamma h_{*}\), as \(\textrm{BCV}(h)\) closes to \(\textrm{AMISE}(h)\). Therefore, we obtain:

$$\begin{aligned} \textrm{P}(\textrm{BCV}(\gamma h_{*})< \textrm{BCV}(h_{*}) ) \xrightarrow {p} 1, \end{aligned}$$
(60)

as \(n\rightarrow \infty \). We combine (57) and (60), and find that

$$\begin{aligned} \textrm{MISE}(\gamma h_{*}) < \textrm{MISE}(h_{*}), \end{aligned}$$
(61)

as \(n\rightarrow \infty \). The contradiction between (59) and (61) completes the proof. \(\square \)

Appendix E

Proof of Theorem 3

We now calculate the bias. Note that \(\hat{r}_{k}(\theta ; h) = \hat{r}_{k}\). Combining (18) and (29) provides the approximation of \(\textrm{E}[\hat{r}_{k}] \):

$$\begin{aligned} \textrm{E}[\hat{r}_{k}]&= \sqrt{2}\left( f(t_{k}) + \frac{1}{2}f^{\prime }(t_{k})h_{k} + \frac{1}{6}f^{\prime \prime }(t_{k})h_{k}^{2}+ O(h^{3})\right) ^{1/2} + O((nh)^{-1}) \nonumber \\&=\sqrt{ 2f(t_{k})} + \frac{ f^{\prime }(t_{k})h_{k}}{2\sqrt{ 2f(t_{k})}} + \frac{ f^{\prime \prime }(t_{k})h_{k}^{2} }{6\sqrt{ 2f(t_{k})}}- \frac{f^{\prime }(t_{k})^{2}h_{k}^{2}}{16\sqrt{2}f(t_{k})^{3/2}} + O(h^{3} + (nh)^{-1})\nonumber \\&= r_{f}(t_{k}) + \frac{1}{2}r_{f}^{\prime }(t_{k})h_{k} +\frac{4r^{\prime \prime }_{f}(t_{k}) + r^{\prime }_{f}(t_{k})^{2}r_{f}(t_{k})^{-1}}{24}h_{k}^{2} + O(h^{3} + (nh)^{-1}). \end{aligned}$$
(62)

Similarly, combining (18) and (31) provides the approximation of \(\textrm{E}[\hat{r}_{k-1}] \):

$$\begin{aligned} \textrm{E}[\hat{r}_{k-1}]&= r_{f}(t_{k}) - \frac{1}{2}r_{f}^{\prime }(t_{k})h_{k-1} + \frac{4r^{\prime \prime }_{f}(t_{k}) + r^{\prime }_{f}(t_{k})^{2}r_{f}(t_{k})^{-1}}{24}h_{k-1}^{2}+ O(h^{3} + (nh)^{-1}). \end{aligned}$$
(63)

By combining (62) and (63), we obtain:

$$\begin{aligned} \textrm{E}[\tilde{r}_{f}(\theta ;h)]&= r_{f}(t_{k}) + r_{f}^{\prime }(t_{k})(\theta -t_{k})\nonumber \\&\quad +\frac{4r^{\prime \prime }_{f}(t_{k}) + r^{\prime }_{f}(t_{k})^{2}r_{f}(t_{k})^{-1}}{24}[h_{k}h_{k-1} + 2(\theta - t_{k})(h_{k} - h_{k-1})]\nonumber \\&\quad + O(h^{3} + (nh)^{-1}), \end{aligned}$$
(64)

for \(\theta \in [t_{k} -h_{k-1}/2, t_{k} +h_{k}/2)\). The Taylor expansion of \(r_{f}(\theta )\) for \(\theta \in [t_{k} -h_{k -1 }/2, t_{k} +h_{k}/2)\) is

$$\begin{aligned} r_{f}(\theta ) = r_{f}(t_{k}) + r^{\prime }(t_{k})(\theta - t_{k}) + \frac{1}{2}r^{\prime \prime }_{f}(t_{k})(\theta -t_{k})^{2} + O( (\theta -t_{k})^{3}). \end{aligned}$$
(65)

Combining (64) and (65) leads to:

$$\begin{aligned} \textrm{Bias}[\tilde{r}(\theta ;h)]&= \frac{r^{\prime \prime }_{f}(t_{k})}{6} [h_{k}h_{k-1} + 2(\theta - t_{k})(h_{k} -h_{k-1}) - 3(\theta -t_{k})^{2}]\nonumber \\&\quad + \frac{1}{24}r^{\prime }_{f}(t_{k})^{2}r_{f}(t_{k})^{-1}[h_{k}h_{k-1} + 2(\theta - t_{k})(h_{k} -h_{k-1})]\nonumber \\&\quad + O(h^{3} + (nh)^{-1}). \end{aligned}$$
(66)

Let \(\textrm{ISB}: = \int ^{2\pi }_{0} \textrm{Bias}[\tilde{r}(\theta ;h)]^{2}d\theta \). Note that \(\textrm{ISB}= \int ^{2\pi - (c + 1/2)h}_{h/2} \textrm{Bias}[\tilde{r}(\theta ;h)]^{2}d\theta + o(1) = \sum _{k=2}^{m-1} \int ^{t_{k} + h/2}_{t_{k} - h/2}\textrm{Bias}[\tilde{r}(\theta ;h)]^{2}d\theta [ 1 +o(1)]\). For \(\theta \in [t_{k} -h/2, t_{k} +h/2)\), \(k= 2, 3,\dots , m-1\), \(\textrm{Bias}[\tilde{r}(\theta ;h)]\) in (66) is

$$\begin{aligned} \textrm{Bias}[\tilde{r}(\theta ;h)] = \frac{r^{\prime \prime }_{f}(t_{k})}{6}[h^{2} - 3(\theta -t_{k})^{2}]+ \frac{1}{24}r^{\prime }_{f}(t_{k})^{2}r_{f}(t_{k})^{-1}h^{2} + O(h^{3} + (nh)^{-1}). \end{aligned}$$
(67)

Integration of \(\textrm{Bias}[\tilde{r}(\theta ;h)]\) in (67) for \(\theta \in [t_{k} -h/2, t_{k} +h/2)\), \(k = 2, 3, \dots , m-1\) is

$$\begin{aligned}&\int ^{t_{k} + h/2}_{t_{k} - h/2}\textrm{Bias}[\tilde{r}(\theta ;h)]^{2}d\theta \nonumber \\&\quad =\int ^{t_{k} + h/2}_{t_{k} - h/2}\Biggl \{\frac{r^{\prime \prime }_{f}(t_{k})}{36}[h^{4} - 6(\theta -t_{k})^{2} + 9(\theta -t_{k})^{4}] +\frac{1}{72} r^{\prime \prime }_{f}(t_{k})r^{\prime }_{f}(t_{k})^{2}r_{f}(t_{k})^{-1}[h^{4}-3(\theta -t_{k})^{2}h^{2}] \nonumber \\&\qquad + \frac{1}{576}r^{\prime }_{f}(t_{k})^{4}r_{f}(t_{k})^{-2}h^{4}\Biggr \}d\theta [1 + o(1)] \nonumber \\&\quad = \left[ \frac{49}{2880}r_{f}^{\prime \prime }(t_{k})^{2}+ \frac{1}{96}r_{f}^{\prime \prime }(t_{k})r_{f}^{\prime }(t_{k})^{2}r_{f}(t_{k})^{-1} + \frac{1}{576}r^{\prime }_{f}(t_{k})^{4}r_{f}(t_{k})^{-2}\right] h^{5}[1 + o(1)] . \end{aligned}$$
(68)

We find that \(\sum _{k=2}^{m-1}r_{f}^{\prime \prime }(t_{k})^{2}h = \int _{h/2}^{2\pi - (c+1/2)h}r_{f}^{\prime \prime }(\theta )^{2}d\theta + o(1)= \int ^{2\pi }_{0}r_{f}^{\prime \prime }(\theta )^{2}d\theta \) + o(1). Calculating each term in (68) for \(k= 2, 3,\dots , m-1\) yields the following form:

$$\begin{aligned} \textrm{ISB}&= \left\{ \frac{49}{2880}R(r_{f}^{\prime \prime }) + \frac{1}{96}R((r_{f}^{\prime \prime })^{1/2} r_{f}^{\prime }r_{f}^{-1/2})+ \frac{1}{576}R((r^{\prime }_{f})^{2}r_{f}^{-1})\right\} h^{4} + o(h^{4}). \end{aligned}$$
(69)

Next, we derive \(\textrm{IV}: = \int ^{2\pi }_{0} \textrm{Var}[\tilde{r}(\theta ;h)]d\theta \). We calculate the variances of \(\hat{r}_{k}\) and \(\hat{r}_{k-1}\) by applying the same method as in (24). By combining (17), (29), (30), (31), and (32), we obtain:

$$\begin{aligned} \textrm{Var}[\hat{r}_{k} ]&= (2 \textrm{E}[\hat{f}_{k}])^{-1}\textrm{E}[W_{k}^{2}] + O((nh)^{-2})\nonumber \\&= \frac{1}{2nh_{k}} + O(n^{-1} + (nh)^{-2}) , \end{aligned}$$
(70)

and

$$\begin{aligned} \textrm{Var}[\hat{r}_{k-1} ]&= \frac{1}{2nh_{k-1}} + O(n^{-1}+ (nh)^{-2}). \end{aligned}$$
(71)

Combining (17), (29), (31), and (33) leads to:

$$\begin{aligned} \textrm{Cov}[\hat{r}_{k-1}, \hat{r}_{k} ]&= 2^{-1}(E[\hat{f}_{k}]E[\hat{f}_{k-1}])^{-1/2}\textrm{E}[W_{k} W_{k-1} ] +O((nh)^{-2})\nonumber \\&= \frac{1}{2[f(t_{k}) + O(h)]}\left[ -\frac{f(t_{k})^{2}}{n} + O(n^{-1}h)\right] + O((nh)^{-2})\nonumber \\&= -\frac{f(t_{k})}{2n} + O(n^{-1}h +(nh)^{-2}) . \end{aligned}$$
(72)

By combining (70), (71), and (72), we obtain:

$$\begin{aligned} \textrm{Var}[\tilde{r}_{f}(\theta ; h)]&= \left( \frac{h_{k}}{2\tilde{h}_{k}} - \frac{\theta - t_{k}}{\tilde{h}_{k}} \right) ^{2} \frac{1}{2nh_{k-1}} + \left( \frac{h_{k-1}}{2\tilde{h}_{k}} + \frac{\theta - t_{k}}{\tilde{h}_{k}} \right) ^{2} \frac{1}{2nh_{k}} + o( (nh)^{-1} ). \end{aligned}$$
(73)

Note that \(\textrm{IV} = \sum _{k=2}^{m-1} \int ^{t_{k} + h/2}_{t_{k} - h/2}\textrm{Var}[\tilde{r}(\theta ;h)]d\theta [ 1 +o(1)]\). For \(\theta \in [t_{k} -h/2, t_{k} +h/2)\), \(k= 2, 3, \dots , m-1\), from (73), we obtain:

$$\begin{aligned} \textrm{Var}[\tilde{r}_{f}(\theta ; h)]&=\frac{1}{2nh}\left[ \frac{1}{2} + 2\frac{(\theta - t_{k})^{2}}{h^{2}} \right] + o( (nh)^{-1}). \end{aligned}$$
(74)

Integration of \(\textrm{Var}[\tilde{r}_{f}(\theta ; h)]\) in (74) for \(\theta \in [t_{k} -h/2, t_{k} +h/2)\), \(k= 2, 3, \dots , m-1\) is

$$\begin{aligned} \int ^{t_{k} + h/2}_{t_{k} - h/2}\textrm{Var}[\tilde{r}(\theta ;h)]d\theta&= \frac{1}{3n}[1+o(1)]. \end{aligned}$$
(75)

From (75), we obtain:

$$\begin{aligned} \textrm{IV}&= \sum _{k=2}^{m-1} \int ^{t_{k} + h/2}_{t_{k} - h/2}\textrm{Var}[\tilde{r}(\theta ;h)]^{2}d\theta [ 1 +o(1)] \nonumber \\&= \sum _{k =2}^{m-1} \frac{1}{3nh} [ 1 + o(1) ]h\nonumber \\&= \frac{2\pi - (1 + c)h}{3nh} +o( (nh)^{-1} )\nonumber \\&= \frac{2\pi }{3nh} + o( (nh)^{-1} ). \end{aligned}$$
(76)

Theorem 3 completes the proof from combining (69) and (76). \(\square \)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuruta, Y., Sagae, M. Automatic data-based bin width selection for rose diagram. Ann Inst Stat Math 75, 855–886 (2023). https://doi.org/10.1007/s10463-023-00868-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-023-00868-4

Keywords

Navigation