Skip to main content
Log in

Least absolute deviation estimation for AR(1) processes with roots close to unity

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

We establish the asymptotic theory of least absolute deviation estimators for AR(1) processes with autoregressive parameter satisfying \(n(\rho _n-1)\rightarrow \gamma\) for some fixed \(\gamma\) as \(n\rightarrow \infty\), which is parallel to the results of ordinary least squares estimators developed by Andrews and Guggenberger (Journal of Time Series Analysis, 29, 203–212, 2008) in the case \(\gamma = 0\) or Chan and Wei (Annals of Statistics, 15, 1050–1063, 1987) and Phillips (Biometrika, 74, 535–574, 1987) in the case \(\gamma \ne 0\). Simulation experiments are conducted to confirm the theoretical results and to demonstrate the robustness of the least absolute deviation estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availibility

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Anderson, T. W. (1959). On asymptotic distributions of estimators of parameters of stochastic difference equations. Annals of Mathematical Statistics, 30, 676–687.

    Article  MathSciNet  MATH  Google Scholar 

  • Andrews, D. W. K., Guggenberger, P. (2008). Asymptotics for stationary very nearly unit root processes. Journal of Time Series Analysis, 29, 203–212.

    MathSciNet  MATH  Google Scholar 

  • Aue, A., Horváth, L. (2007). A limit theorem for mildly explosive autoregression with stable errors. Econometric Theory, 23, 201–220.

    Article  MathSciNet  MATH  Google Scholar 

  • Bobkoski M. J. (1983). Hypothesis testing in nonstationary time series. Ph.D. Thesis, Department of Statistics, University of Wisconsin, Madison, Wisconsin.

  • Buchmann, B., Chan, N. H. (2013). Unified asymptotic theory for nearly unstable AR(p) processes. Stochastic Processes and their Applications, 123, 952–985.

    Article  MathSciNet  MATH  Google Scholar 

  • Cavanagh, C. (1985). Roots local to unity. Manuscript, Department of Economics, Harvard University, Cambridge, Massachusetts.

  • Chan, N. H. (2009). Time series with roots on or near the unit circle. In T. G. Andersen, R. A. Davis, J. Kreiss, T. Mikosch (Eds.), Springer handbook of financial time series (pp. 696–707). Berlin, Germany: Springer-Verlag.

  • Chan, N. H., Wei, C. Z. (1987). Asymptotic inference for nearly nonstationary AR(1) processes. Annals of Statistics, 15, 1050–1063.

    Article  MathSciNet  MATH  Google Scholar 

  • Davis, R. A., Knight, K., Liu, J. (1992). M-estimation for autoregressions with infinite variance. Stochastic Processes and their Applications, 40, 145–180.

    Article  MathSciNet  MATH  Google Scholar 

  • Dickey, D. A., Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74, 427–431.

    MathSciNet  MATH  Google Scholar 

  • Ethier, S. N., Kurtz, T. G. (1986). Markov processes: Characterization and convergence. Hoboken, New Jersey: John Wiley & Sons, Inc.

    Book  MATH  Google Scholar 

  • Giraitis, L., Phillips, P. C. B. (2006). Uniform limit theory for stationary autoregression. Journal of Time Series Analysis, 27, 51–60.

    Article  MathSciNet  MATH  Google Scholar 

  • Graversen, S. E., Peskir, G. (2000). Maximal inequalities for the Ornstein-Uhlenbeck process. Proceedings of the American Mathematical Society, 128, 3035–3041.

    Article  MathSciNet  MATH  Google Scholar 

  • Hansen, B. E. (1992). Convergence to stochastic integrals for dependent heterogeneous processes. Econometric Theory, 8, 489–500.

    Article  MathSciNet  Google Scholar 

  • Herce, M. A. (1996). Asymptotic theory of LAD estimation in a unit root process with finite variance errors. Econometric Theory, 12, 129–153.

    Article  MathSciNet  Google Scholar 

  • Jiang, H., Wan, Y. L., Yang, G. Y. (2022). Deviation inequalities and Cramer-type moderate deviations for the explosive autoregressive process. Bernoulli, 28, 2634–2662.

    Article  MathSciNet  MATH  Google Scholar 

  • Knight, K. (1989). Limit theory for autoregressive parameter estimates in an infinite variance random walk. Canadian Journal of Statistics, 17, 261–278.

    Article  MathSciNet  MATH  Google Scholar 

  • Knight, K. (1998). Limiting distributions for \(L_1\) regression estimators under general conditions. Annals of Statistics, 26, 755–770.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, G. D., Li, W. K. (2009). Least absolute deviation estimation for unit root processes with GARCH errors. Econometric Theory, 25, 1208–1227.

    Article  MathSciNet  MATH  Google Scholar 

  • Ling, S. Q. (2005). Self-weighted least absolute deviation estimation for infinite variance autoregressive models. Journal of the Royal Statistical Society: Series B, 67, 381–393.

    Article  MathSciNet  MATH  Google Scholar 

  • Miao, Y., Shen, S. (2009). Moderate deviation principle for autoregressive processes. Journal of Multivariate Analysis, 100, 1952–1961.

    Article  MathSciNet  MATH  Google Scholar 

  • Miao, Y., Wang, Y. L., Yang, G. Y. (2015). Moderate deviations principle for empirical covariance from a unit root. Scandinavian Journal of Statistics, 42, 234–255.

    Article  MATH  Google Scholar 

  • Müller, U. K., Elliott, G. (2003). Tests for unit roots and the initial condition. Econometrica, 71, 1269–1286.

    Article  MathSciNet  MATH  Google Scholar 

  • Øksendal, B. (2005). Stochastic differential equation: An introduction with applications (6th ed.). Berlin Heidelberg: Springer-Verlag.

  • Phillips, P. C. B. (1987). Toward a unified asymptotic theory of autoregression. Biometrika, 74, 535–574.

    Article  MathSciNet  MATH  Google Scholar 

  • Phillips, P. C. B. (1988). Regression theory for near-integrated time series. Econometrica, 56, 1021–1043.

    Article  MathSciNet  MATH  Google Scholar 

  • Phillips, P. C. B. (1991). A shortcut to LAD estimator asymptotics. Econometric Theory, 7, 450–463.

    Article  MathSciNet  Google Scholar 

  • Phillips P. C. B. (2021). Estimation and inference with near unit roots. Cowles Foundation Discussion Papers. 2654. https://elischolar.library.yale.edu/cowles-discussion-paper-series/2654.

  • Phillips, P. C. B., Durlauf, S. N. (1986). Multiple time series regressions with integrated processes. Review of Economic Studies, 53, 473–495.

    Article  MathSciNet  MATH  Google Scholar 

  • Phillips, P. C. B., Magdalinos, T. (2007). Limit theory for moderate deviations from a unit root. Jounal of Econometrics, 136, 115–130.

    Article  MathSciNet  MATH  Google Scholar 

  • Phillips, P. C. B., Magdalinos, T. (2009). Unit root and cointegrating limit theory when initialization is in the infinite past. Econometric Theory, 25, 1682–1715.

    Article  MathSciNet  MATH  Google Scholar 

  • Pollard, D. (1991). Asymptotics for least absolute deviation regression estimators. Econometric Theory, 7, 186–199.

    Article  MathSciNet  Google Scholar 

  • Rootzén, H. (1980). Limit distributions for the error in approximations of stochastic integrals. Annals of Probability, 8, 244–251.

    Article  MathSciNet  MATH  Google Scholar 

  • Silverman, B. W. (1986). Density estimation for statistics and data analysis. New York: Chapman and Hall.

  • Stock, J. M. (1991). Confidence intervals for the largest autoregressive root in U.S. macroeconomic time series. Journal of Monetary Economics, 28, 435–459.

    Article  Google Scholar 

  • Tanaka, K. (2017). Time series analysis: nonstationary and noninvertible distribution theory (2nd ed.). Hoboken, New Jersey: Wiley.

    Book  MATH  Google Scholar 

  • Wang, X. H., Wang, H. L., Wang, H. R., Hu, S. H. (2020). Asymptotic inference of least absolute deviation estimation for AR(1) processes. Communications in Statistics-Theory and Methods, 49, 809–826.

    Article  MathSciNet  MATH  Google Scholar 

  • White, J. S. (1958). The limiting distribution of the serial correlation coefficient in the explosive case. Annals of Mathematical Statistics, 29, 1188–1197.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou, Z. Y., Lin, Z. Y. (2014). Asymptotic theory for LAD estimation of moderate deviation from a unit root. Statistics and Probability Letters, 90, 25–32.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to the anonymous referees and AE for helpful comments which surely lead to an improved presentation of this paper. The authors are very grateful to Huarui He, Hui Jiang, Feng Li, Yu Miao, Shaochen Wang and Qingshan Yang for the helpful discussions. Hailin Sang’s work was partially supported by the Simons Foundation Grant 586789, USA. Guangyu Yang’s work was partially supported by the Foundation of Young Scholar of the Educational Department of Henan Province Grant 2019GGJS012, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyu Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, N., Sang, H. & Yang, G. Least absolute deviation estimation for AR(1) processes with roots close to unity. Ann Inst Stat Math 75, 799–832 (2023). https://doi.org/10.1007/s10463-022-00864-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-022-00864-0

Keywords

Navigation