Skip to main content
Log in

A copula spectral test for pairwise time reversibility

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we propose a new frequency domain test for pairwise time reversibility at any specific couple of quantiles of two-dimensional marginal distribution. The proposed test is applicable to a very broad class of time series, regardless of the existence of moments and Markovian properties. By varying the couple of quantiles, the test can detect any violation of pairwise time reversibility. Our approach is based on an estimator of the \(L^2\)-distance between the imaginary part of copula spectral density kernel and its value under the null hypothesis. We show that the limiting distribution of the proposed test statistic is normal and investigate the finite sample performance by means of a simulation study. We illustrate the use of the proposed test by applying it to stock price data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Beare, B. K., Seo, J. (2014). Time irreversible copula-based Markov models. Economic Theory, 30, 923–960.

    Article  MathSciNet  MATH  Google Scholar 

  • Birr, S., Volgushev, S., Kley, T., Dette, H., Hallin, M. (2017). Quantile spectral analysis for locally stationary time series. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79, 1619–1643.

    Article  MathSciNet  MATH  Google Scholar 

  • Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307–327.

    Article  MathSciNet  MATH  Google Scholar 

  • Bradley, R. C. (2005). Basic properties of strong mixing conditions. A survey and some open questions. Probability Surveys, 2, 107–144.

    Article  MathSciNet  MATH  Google Scholar 

  • Brillinger, D. R. (2001). Time series: Data analysis and theory. Philadephia: SIAM.

    Book  MATH  Google Scholar 

  • Carrasco, M., Chen, X. (2002). Mixing and moment properties of various GARCH and stochastic volatility models. Economic Theory, 18, 17–39.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, Y. (2003). Testing serial independence against time irreversibility. Studies in Nonlinear Dynamics and Econometrics, 7, 1–28.

    MATH  Google Scholar 

  • Chen, Y., Kuan, C. (2002). Time irreversibility and EGARCH effects in US stock index returns. Journal of Applied Econometrics, 17, 565–578.

    Article  Google Scholar 

  • Chen, Y., Chou, R. Y., Kuan, C. (2000). Testing time reversibility without moment restrictions. Journal of Econometrics, 95, 199–218.

    Article  MATH  Google Scholar 

  • Comenetz, M. (2002). Calculus: The elements. Singapore: World Scientific Publishing Company.

    Book  MATH  Google Scholar 

  • Darolles, S., Florens, J. P., Gouriéroux, C. (2004). Kernel-based nonlinear canonical analysis and time reversibility. Journal of Econometrics, 119, 323–353.

    Article  MathSciNet  MATH  Google Scholar 

  • Dette, H., Hildebrandt, T. (2012). A note on testing hypotheses for stationary processes in the frequency domain. Journal of Multivariate Analysis, 104, 101–114.

    Article  MathSciNet  MATH  Google Scholar 

  • Dette, H., Paparoditis, E. (2009). Bootstrapping frequency domain tests in multivariate time series with an application to comparing spectral densities. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71, 831–857.

    Article  MathSciNet  MATH  Google Scholar 

  • Dette, H., Kinsvater, T., Vetter, M. (2011). Testing non-parametric hypotheses for stationary processes by estimating minimal distances. Journal of Time Series Analysis, 32, 447–461.

    Article  MathSciNet  MATH  Google Scholar 

  • Dette, H., Preuss, P., Vetter, M. (2011). A measure of stationarity in locally stationary processes with applications to testing. Journal of the American Statistical Association, 106, 1113–1124.

    Article  MathSciNet  MATH  Google Scholar 

  • Dette, H., Hallin, M., Kley, T., Volgushev, S. (2015). Of copulas, quantiles, ranks and spectra: An \(L_1\)-approach to spectral analysis. Bernoulli, 21, 781–831.

    Article  MathSciNet  MATH  Google Scholar 

  • Eichler, M. (2008). Testing nonparametric and semiparametric hypotheses in vector stationary process. Journal of Multivariate Analysis, 99, 968–1009.

    Article  MathSciNet  MATH  Google Scholar 

  • Fryzlewicz, P., Rao, S. S. (2011). Mixing properties of ARCH and time-varying ARCH processes. Bernoulli, 17, 320–346.

    Article  MathSciNet  MATH  Google Scholar 

  • Gasser, T., Műller, H. G., Mammitzsch, V. (1985). Kernels for nonparametric curve estimation. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 47, 238–252.

    MathSciNet  MATH  Google Scholar 

  • Hinich, M. J., Rothman, R. (1998). Frequency-domain test of time reversibility. Macroeconomic Dynamics, 2, 72–88.

    Article  MATH  Google Scholar 

  • Hong, Y. (2000). Generalized spectral tests for serial dependence. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 62, 557–574.

    Article  MathSciNet  MATH  Google Scholar 

  • Jentsch, C., Pauly, M. (2015). Testing equality of spectral densities using randomization techniques. Bernoulli, 21, 697–739.

    Article  MathSciNet  MATH  Google Scholar 

  • Kley, T., Volgushev, S., Dette, H., Hallin, M. (2015). Supplement to “Quantile spectral processes: Asymptotic analysis and inference’’. Bernoulli. https://doi.org/10.3150/15-BEJ711SUPP.

    Article  MATH  Google Scholar 

  • Kley, T., Volgushev, S., Dette, H., Hallin, M. (2016). Quantile spectral process: Asymptotic analysis and inference. Bernoulli, 22, 1770–1807.

    Article  MathSciNet  MATH  Google Scholar 

  • Koenker, R., Xiao, Z. (2006). Quantile autoregression. Journal of the American Statistical Association, 101, 980–990.

    Article  MathSciNet  MATH  Google Scholar 

  • Mokkadem, A. (1988). Mixing properties of ARMA processes. Stochastic Processes and their Applications, 29, 309–315.

    Article  MathSciNet  MATH  Google Scholar 

  • Nagao, H. (1973). On some test criteria for covariance matrix. The Annals of Statistics, 1, 700–709.

    Article  MathSciNet  MATH  Google Scholar 

  • Paparoditis, E., Politis, D. N. (2002). The local bootstrap for Markov processes. Journal of Statistical Planning and Inference, 108, 301–328.

    Article  MathSciNet  MATH  Google Scholar 

  • Psaradakis, Z. (2008). Assessing time reversibility under minimal assumptions. Journal of Time Series Analysis, 29, 881–905.

    Article  MathSciNet  MATH  Google Scholar 

  • Racine, J. S., Maasoumi, E. (2007). A versatile and robust metric entropy test of time-reversibility, and other hypotheses. Journal of Econometrics, 138, 547–567.

    Article  MathSciNet  MATH  Google Scholar 

  • Ramsey, J. B., Rothman, P. (1996). Time irreversibility and bussiness cycle asymmetry. Journal of Money, Credit and Banking, 28, 3–20.

    Article  Google Scholar 

  • Sharifdoost, M., Mahmoodi, S., Pasha, E. (2009). A statistical test for time reversibility of stationary finite state Markov chains. Applied Mathematical Sciences, 52, 2563–2574.

    MathSciNet  MATH  Google Scholar 

  • Silverman, B. (1986). Density estimation for statistics and data analysis. London: Chapman & Hall.

    MATH  Google Scholar 

  • Tong, H. (1990). Nonlinear time series-a dynamic system approach. Oxford: Oxford University Press.

    Google Scholar 

  • Wild, P., Foster, J., Hinich, M. J. (2014). Testing for non-linear and time irreversible probabilistic structure in high frequency financial time series data. Journal of the Royal Statistical Society: Series A (Statistics in Society), 177, 643–659.

    Article  MathSciNet  Google Scholar 

  • Zhang, S. (2019). Bayesian copula spectral analysis for stationary time series. Computational Statistics and Data Analysis, 133, 166–179.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank the Associate Editor and anonymous reviewers for their constructive comments that resulted in an improved version of the paper. This work was supported by the National Natural Science Foundation of China (Grant Numbers: 11671416, 11971116), the Natural Science Foundation of Shanghai (grant number: 20JC1413800) and the research project of Shanghai Normal University (Grant Number: SK202239).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shibin Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10463_2022_859_MOESM1_ESM.pdf

Supplementary materials related to this article, including some R programs, a guide for using them, and some additional simulation results, are available online.

Appendix Details for the proofs in Sect. 3

Appendix Details for the proofs in Sect. 3

This appendix contains the detailed proofs of Theorems 1 and 2. For ease of notation, we use C for any generic positive constant.

1.1 Main lemmas used in the proofs

Recall that the rth-order joint cumulant \(\text {cum}(\zeta _1,\ldots , \zeta _r)\) of the random vector \((\zeta _1,\ldots ,\zeta _r)\) is defined as

$$\begin{aligned} \textrm{cum}(\zeta _1,\ldots ,\zeta _r):=\sum _{\{\nu _1,\ldots ,\nu _p\}}(-1)^{p-1} (p-1)! \big (\textbf{E}\prod _{j\in \nu _1}\zeta _j\big )\cdots \big (\textbf{E}\prod _{j\in \nu _p}\zeta _j\big ), \end{aligned}$$

with summation extending over all partitions \(\{\nu _1,\ldots ,\nu _p\}\), \(p=1,\ldots ,r\), of \(\{1,\ldots ,r\}\) (cf. Brillinger 2001, pp. 19). If \(\zeta _1=\cdots =\zeta _r=\zeta\), we use \(\textrm{cum}_r(\zeta )\) to denote \(\textrm{cum}(\zeta _1,\ldots ,\zeta _r)\).

Lemma 1

If assumption (M) holds, then the following assumption (C) also holds.

(C) There exist constants \(\rho \in (0,1)\) and \(K<\infty\) such that, for arbitrary intervals \(A_1,\ldots , A_p\subset \mathbb {R}\) and arbitrary \(t_1,\ldots ,t_p\in \mathbb {Z}\),

$$\begin{aligned} \big |\textrm{cum}\big (\mathbb {I}_{A_1}(x_{t_1}),\ldots ,\mathbb {I}_{A_p}(x_{t_p})\big )\big |\le K \rho ^{\max _{i,j}|t_i-t_j|}. \end{aligned}$$
(19)

Proof

Let \(\alpha (n):=\sup \{\textbf{P}(A B)-\textbf{P}(A)\textbf{P}(B): \, A\in \sigma (x_k; k\le 0),\, B\in \sigma (x_k; k\ge n)\}\). According to Bradley (2005), we have \(\alpha (n)\le \frac{1}{2}\beta (n)\). Then, by applying Proposition 3.1 of Kley et al. (2016), we obtain the lemma. \(\square\)

For \(\omega \in (0,\pi ]\) and \((\tau _1,\tau _2)\in [0,1]^2\), we denote

$$\begin{aligned} \textbf{y}_{n,U}^{\tau _1, \tau _2}(\omega )=\big (\textrm{Re}\, y_{n,U}^{\tau _1}(\omega ),\textrm{Im}\, y_{n,U}^{\tau _1}(\omega ),\textrm{Re}\,y_{n,U}^{\tau _2}(\omega ), \textrm{Im}\,y_{n,U}^{\tau _2}(\omega )\big )^T, \end{aligned}$$

where \(y_{n,U}^{\tau }(\omega )\) is defined in (14).

Then, according to (1.6) of Kley et al. (2015), we have the following lemma.

Lemma 2

If \(\{x_t\}_{t\in \mathbb {Z}}\) is strictly stationary and satisfies assumption (C), then for every \(\omega \in (0,\pi ]\), we have

$$\begin{aligned} \textbf{y}_{n,U}^{\tau _1, \tau _2}(\omega )\rightsquigarrow \mathbb {Y}^{\tau _1, \tau _2}(\omega ), \end{aligned}$$

as n goes to infinity, where \(\mathbb {Y}^{\tau _1, \tau _2}(\omega )=(\mathbb {C}^{\tau _1}(\omega ),\mathbb {D}^{\tau _1}(\omega ),\mathbb {C}^{\tau _2}(\omega ),\mathbb {D}^{\tau _2}(\omega ))^T\) follows a four-dimensional zero-mean Gaussian distribution with covariance matrix \(\frac{1}{2}\begin{pmatrix} \Sigma _{11} &{} \Sigma _{12}\\ \Sigma _{21} &{} \Sigma _{22} \end{pmatrix}\), with

$$\begin{aligned} \Sigma _{ij}={\left\{ \begin{array}{ll} \begin{pmatrix} f_{q_{\tau _i},q_{\tau _i}}(\omega ) &{} 0\\ 0 &{} f_{q_{\tau _i},q_{\tau _i}}(\omega )\end{pmatrix}, &{} \text {if }i=j,\\ \begin{pmatrix} \textrm{Re} f_{q_{\tau _i},q_{\tau _j}}(\omega ) &{} \textrm{Im} f_{q_{\tau _i},q_{\tau _j}}(\omega )\\ -\textrm{Im} f_{q_{\tau _i},q_{\tau _j}}(\omega ) &{} \textrm{Re} f_{q_{\tau _i},q_{\tau _j}}(\omega )\end{pmatrix},&\text {if }i\ne j. \end{array}\right. } \end{aligned}$$
(20)

Moreover, \(\textbf{y}_{n,U}^{\tau _1, \tau _2}(\omega )\) is asymptotically independent for distinct \(\omega\)’s.

Let \(\textrm{Im}\, I^{\tau _1,\tau _2}(\omega )=\mathbb {C}^{\tau _1}(\omega )\mathbb {D}^{\tau _2}(\omega )-\mathbb {D}^{\tau _1}(\omega )\mathbb {C}^{\tau _2}(\omega )\). Then, we have:

Lemma 3

If \(\{x_t\}_{t\in \mathbb {Z}}\) is strictly stationary and satisfies assumption (C), then \(I^{\tau _1,\tau _2}(\omega )\)s are independent among distinct \(\omega\)’s; moreover, for every \(\omega \in (0,\pi ]\) and \(\tau _1,\tau _2\in [0,1]\), it holds

$$\begin{aligned} \textbf{E}\big [\textrm{Im}\, I^{\tau _1,\tau _2}(\omega )\big ]= \textrm{Im} f_{q_{\tau _1},q_{\tau _2}}(\omega ) \end{aligned}$$
(21)

and

$$\begin{aligned} \textbf{E}\big [\big (\textrm{Im}\,I^{\tau _1,\tau _2}(\omega )\big )^2\big ]=&\frac{3}{2}\big (\textrm{Im} f_{q_{\tau _1},q_{\tau _2}}(\omega )\big )^2+\frac{1}{2}f_{q_{\tau _1},q_{\tau _1}}(\omega )f_{q_{\tau _2},q_{\tau _2}}(\omega )\nonumber \\&\quad -\frac{1}{2} \big (\textrm{Re} f_{q_{\tau _1},q_{\tau _2}}(\omega )\big )^2=: A_{\tau _1,\tau _2}(\omega ). \end{aligned}$$
(22)

Proof

To prove (21) and (22), from Lemma 2, it suffices to verify

$$\begin{aligned} \textbf{E}\big [\mathbb {C}^{\tau _1}(\omega )\mathbb {D}^{\tau _2}(\omega )-\mathbb {D}^{\tau _1}(\omega )\mathbb {C}^{\tau _2}(\omega )\big ]=\textrm{Im} f_{q_{\tau _1},q_{\tau _2}}(\omega ) \end{aligned}$$
(23)

and

$$\begin{aligned} \textbf{E}\big [\big (\mathbb {C}^{\tau _1}(\omega )\mathbb {D}^{\tau _2}(\omega )-\mathbb {D}^{\tau _1}(\omega )\mathbb {C}^{\tau _2}(\omega )\big )^2\big ]=A_{\tau _1,\tau _2}(\omega ). \end{aligned}$$
(24)

From (20), the equality (23) holds obviously. By using Lemma 2.2 of Nagao (1973) and (20), some straightforward calculations yield the equality (24).\(\square\)

For \(p\ge 2\), \(k_1,\ldots ,k_{p-1}\in \mathbb {Z}\) and the quantile levels \(\tau _1,\ldots ,\tau _p\in [0,1]\), consider the copula cumulant kernel of order p

$$\begin{aligned} \gamma _{k_1,\ldots ,k_{p-1}}^U (\tau _1,\ldots ,\tau _p):=\textrm{cum}\big (\mathbb {I}_{(0,\tau _1]}(U_{0}),\mathbb {I}_{(0,\tau _1]}(U_{k_1}),\ldots ,\mathbb {I}_{(0,\tau _p]}(U_{k_{p-1}})\big ), \end{aligned}$$

where \(U_t=F(x_t)\). Note that, under assumption (C), the following quantity, which we call copula spectral density kernel of order p,

$$\begin{aligned} f_{q_{\tau _1},\ldots ,q_{\tau _p}}(\omega _1,\ldots ,\omega _{p-1}):=\frac{1}{(2\pi )^{p-1}} \sum _{k_1,\ldots ,k_{p-1}=\infty }^\infty \gamma _{k_1,\ldots ,k_{p-1}}^U (\tau _1,\ldots ,\tau _p)\,\textrm{e}^{-\textrm{i}(k_1 \omega _1+\cdots +k_{p-1}\omega _{p-1})} \end{aligned}$$

exists for all \(p\ge 2\) (pp. 1 of(Kley et al. 2015)).

Let

$$\begin{aligned} \varepsilon (\tau _1,\ldots ,\tau _p,\omega _1,\ldots ,\omega _p):=&\textrm{cum}\big (y_{n,U}^{\tau _1}(\omega _1),\ldots ,y_{n,U}^{\tau _p}(\omega _p)\big )\\&- (2\pi )^{p/2-1} n^{-p/2} \Delta _n\big (\sum _{i=1}^p \omega _i\big )f_{q_{\tau _1},\ldots ,q_{\tau _p}}(\omega _1,\ldots ,\omega _{p-1}), \end{aligned}$$

where \(\Delta _n(\omega ):=\sum _{t=1}^n \textrm{e}^{-\textrm{i} \omega t}\).

By Theorem 1.3 of Kley et al. (2015), we obtain the following lemma directly.

Lemma 4

If \(\{x_t\}_{t\in \mathbb {Z}}\) is strictly stationary and satisfies assumption (C), then

$$\begin{aligned} \sup _{\tau _1,\ldots ,\tau _p\in [0,1]} \sup _{\omega _1,\ldots ,\omega _p\in (0,\pi ]}\big |\varepsilon (\tau _1,\ldots ,\tau _p,\omega _1,\ldots ,\omega _p)\big |=O(n^{-p/2}). \end{aligned}$$
(25)

Since \(|\Delta _n(\omega )|\le n\) holds, and \(f_{q_{\tau _1},\ldots ,q_{\tau _p}}(\omega _1,\ldots ,\omega _{p-1})\) is bounded above uniformly for \((\omega _1,\ldots ,\omega _{p-1})\in (0,\pi ]^{p-1}\) (pp. 1 of Kley et al. 2015), we obtain:

Corollary 1

If \(\{x_t\}_{t\in \mathbb {Z}}\) is strictly stationary and satisfies assumption (C), then

$$\begin{aligned} \sup _{\tau _1,\ldots ,\tau _p\in [0,1]} \sup _{\omega _1,\ldots ,\omega _p\in (0,\pi ]}\big |\textrm{cum}\big (y_{n,U}^{\tau _1}(\omega _1),\ldots ,y_{n,U}^{\tau _p}(\omega _p)\big )\big |=O(n^{1-p/2}). \end{aligned}$$
(26)

Lemma 5

If \(\{x_t\}_{t\in \mathbb {Z}}\) is strictly stationary and satisfies assumption (C), then

$$\begin{aligned}&\textbf{E}\big [\textrm{Im}\, I_{n,U}^{\tau _1,\tau _2}(\omega )\big ]= \textrm{Im} f_{q_{\tau _1},q_{\tau _2}}(\omega ) + O(\frac{1}{n}) \end{aligned}$$
(27)

and

$$\begin{aligned} \textbf{E}\big [\textrm{Im}\,I_{n,U}^{\tau _1,\tau _2}(\omega _1)\, \textrm{Im}\,I_{n,U}^{\tau _1,\tau _2}(\omega _2)\big ] =\textrm{Im} f_{q_{\tau _1},q_{\tau _2}}(\omega _1)\, \textrm{Im} f_{q_{\tau _1},q_{\tau _2}}(\omega _2)+O(\frac{1}{\sqrt{n}}) \end{aligned}$$
(28)

hold uniformly for all \(\tau _1,\tau _2\in [0,1]\) and for all \(\omega ,\omega _1,\omega _2\in (0,\pi ]\). More generally, for each \(p\in \mathbb {N}\) and \(k_1,\ldots ,k_p\in \mathbb {N}\),

$$\begin{aligned} \textbf{E}\big [\big (\textrm{Im}\,I_{n,U}^{\tau _1,\tau _2}(\omega _1)\big )^{k_1}\cdots \big (\textrm{Im}\,I_{n,U}^{\tau _1,\tau _2}(\omega _p)\big )^{k_p}\big ] =\textbf{E}\big [\big (\textrm{Im}\,I^{\tau _1,\tau _2}(\omega _1)\big )^{k_1}\cdots \big (\textrm{Im}\,I^{\tau _1,\tau _2}(\omega _p)\big )^{k_p}\big ]+O(\frac{1}{\sqrt{n}}) \end{aligned}$$
(29)

hold uniformly for all \(\tau _1,\tau _2\in [0,1]\) and all \(\omega _1,\ldots ,\omega _2\in (0,\pi ]\).

Proof

Note that,

$$\begin{aligned} \textrm{Im}\,I_{n,U}^{\tau _1,\tau _2}(\omega )=\frac{I_{n,U}^{\tau _1,\tau _2}(\omega )-I_{n,U}^{\tau _1,\tau _2}(-\omega )}{2\,\textrm{i}} =\frac{y_{n,U}^{\tau _1}(-\omega )y_{n,U}^{\tau _2}(\omega )-y_{n,U}^{\tau _1}(\omega )y_{n,U}^{\tau _2}(-\omega )}{2\,\textrm{i}}. \end{aligned}$$
(30)

First expressing moments of the form \(\textbf{E}[y_{n,U}^{\tau _1}(\omega _1)\cdots y_{n,U}^{\tau _p}(\omega _p)]\) in terms of cumulants, then using (25) for \(p=2\) and (26) for \(p\ge 3\) recursively, we can obtain (27)–(29).

To illustrate, we only prove (27).

Expressing \(\textbf{E}[y_{n,U}^{\tau _1}(-\omega )y_{n,U}^{\tau _2}(\omega )]\) in terms of cumulants, we obtain

$$\begin{aligned} \textbf{E}[y_{n,U}^{\tau _1}(-\omega )y_{n,U}^{\tau _2}(\omega )] =\textrm{cum}(y_{n,U}^{\tau _1}(-\omega ),y_{n,U}^{\tau _2}(\omega ))+ \textbf{E}[y_{n,U}^{\tau _1}(-\omega )]\textbf{E}[y_{n,U}^{\tau _2}(\omega )]. \end{aligned}$$
(31)

According to (25), we have

$$\begin{aligned} \textrm{cum}(y_{n,U}^{\tau _1}(-\omega ),y_{n,U}^{\tau _2}(\omega ))= f_{q_{\tau _1},q_{\tau _2}}(\omega )+\varepsilon (\tau _1,\tau _2,-\omega ,\omega ) =f_{q_{\tau _1},q_{\tau _2}}(\omega )+O(\frac{1}{n}), \end{aligned}$$
(32)

where \(O(\frac{1}{n})\) holds uniformly for all \(\tau _1,\tau _2\in [0,1]\) and all \(\omega \in (0,\pi ]\). Combining (31) with (32), we obtain

$$\begin{aligned} \textbf{E}[y_{n,U}^{\tau _1}(-\omega )y_{n,U}^{\tau _2}(\omega )] =f_{q_{\tau _1},q_{\tau _2}}(\omega )+ \textbf{E}[y_{n,U}^{\tau _1}(-\omega )]\textbf{E}[y_{n,U}^{\tau _2}(\omega )]+O(\frac{1}{n}). \end{aligned}$$
(33)

With arguments similar to prove (33), we have

$$\begin{aligned} \textbf{E}[y_{n,U}^{\tau _1}(\omega )y_{n,U}^{\tau _2}(-\omega )] =f_{q_{\tau _1},q_{\tau _2}}(-\omega )+ \textbf{E}[y_{n,U}^{\tau _1}(\omega )]\textbf{E}[y_{n,U}^{\tau _2}(-\omega )]+O(\frac{1}{n}). \end{aligned}$$
(34)

Noting that \(\textbf{E}[y_{n,U}^{\tau }(\omega )]=(\sqrt{2\pi n})^{-1} \tau \sum _{t=1}^n \textrm{e}^{\textrm{i}\omega t}\), we find

$$\begin{aligned} \textbf{E}[y_{n,U}^{\tau _1}(-\omega )]\textbf{E}[y_{n,U}^{\tau _2}(\omega )]=\textbf{E}[y_{n,U}^{\tau _1}(\omega )]\textbf{E}[y_{n,U}^{\tau _2}(-\omega )]. \end{aligned}$$
(35)

Combining (30) and (33)–(35) yields

$$\begin{aligned} \textbf{E}\big [ \textrm{Im}\,I_{n,U}^{\tau _1,\tau _2}(\omega )\big ] =\frac{f_{q_{\tau _1},q_{\tau _2}}(\omega )-f_{q_{\tau _1},q_{\tau _2}}(-\omega )}{2\,\textrm{i}}+O(\frac{1}{n}) =\textrm{Im}\,f_{q_{\tau _1},q_{\tau _2}}(\omega )+O(\frac{1}{n}). \end{aligned}$$

\(\square\)

Lemma 6

If assumption (M) is satisfied, then we have for each \(\tau \in [0,1]\),

$$\begin{aligned} \sup _{\omega \in (0,2\pi ]}|y_{n,R}^{\tau }(\omega )-y_{n,U}^{\tau }(\omega )|=o_P(n^{-1/4+\delta /2}) \end{aligned}$$
(36)

holds, where \(\delta\) can be taken to any constant satisfying \(0<\delta <1/2\), as in Condition 1.

Proof

If assumption (M) is satisfied, then for every \(0<\delta <1/2\), there exists a \(\theta >1/\delta -1\) such that \(\beta (n)=O(n^{-\theta })\). It follows from (A.13) of Dette et al. (2015) that

$$\begin{aligned} \sup _{\omega \in (0,2\pi ]}|y_{n,R}^{\tau }(\omega )-y_{n,U}^{\tau }(\omega )|&=n^{-1/4} (n^{\frac{1}{1+\theta }}\log n)^{1/2} \log n \,O_P(1)\\&=n^{-1/4+\delta /2} \frac{(\log n)^{3/2}}{n^{\delta /2-1/2(1+\theta )}} \,O_P(1)=n^{-1/4+\delta /2} \,o_P(1), \end{aligned}$$

since \(\delta >1/(1+\theta )\) holds. This proves the lemma.\(\square\)

Lemma 7

If assumption (M) is satisfied, then

$$\begin{aligned}&\sup _{\omega \in (0,2\pi ]}|I_{n,U}^{\tau _1,\tau _2}(\omega )|=O_P(n^{1/k}), \end{aligned}$$
(37)
$$\begin{aligned}&\sup _{\omega \in (0,2\pi ]}|I_{n,R}^{\tau _1,\tau _2}(\omega )|=O_P(n^{1/k}) \end{aligned}$$
(38)

and

$$\begin{aligned} \sup _{\omega \in (0,2\pi ]}|I_{n,R}^{\tau _1,\tau _2}(\omega )-I_{n,U}^{\tau _1,\tau _2}(\omega )|=o_P(n^{-1/4+\delta /2}) \end{aligned}$$
(39)

hold for any \(k\in \mathbb {N}\) and any \(\delta \in (0,1/2)\).

Proof

By Lemma 1, assumption (M) implies assumption (C). Since \(y_{n,U}^{\tau }(\omega )\) is defined as a piecewise constant function extended from (14), by Lemma A.6 of Kley et al. (2016), we have \(\sup _{\omega \in (0,2\pi ]}|y_{n,U}^{\tau }(\omega )|=O_P(n^{1/(2k)})\) for any \(k\in \mathbb {N}\). Since the inequality \(\sup _{\omega \in (0,2\pi ]}|I_{n,U}^{\tau _1,\tau _2}(\omega )|\le \big (\sup _{\omega \in (0,2\pi ]}|y_{n,U}^{\tau }(\omega )|\big )^2\) holds, we obtain (37).

By applying the triangular inequality, we have

$$\begin{aligned} |I_{n,R}^{\tau _1,\tau _2}(\omega )-I_{n,U}^{\tau _1,\tau _2}(\omega )|&=|y_{n,R}^{\tau _1}(\omega )| |y_{n,R}^{\tau _2}(\omega )-y_{n,U}^{\tau _2}(\omega )|+|y_{n,U}^{\tau _2}(\omega )| |y_{n,R}^{\tau _1}(\omega )-y_{n,U}^{\tau _1}(\omega )|. \end{aligned}$$

For any \(\delta \in (0,1/2)\), choosing any \(\delta _0\in (0,\delta )\), taking \(k=[1/(\delta -\delta _0)]\) and applying (36), we obtain

$$\begin{aligned}&\sup _{\omega \in (0,2\pi ]} |y_{n,R}^{\tau _1}(\omega )| |y_{n,R}^{\tau _2}(\omega )-y_{n,U}^{\tau _2}(\omega )|\le \sup _{\omega \in (0,2\pi ]} |y_{n,R}^{\tau _1}(\omega )| \sup _{\omega \in (0,2\pi ]} |y_{n,R}^{\tau _2}(\omega )-y_{n,U}^{\tau _2}(\omega )|\\&\qquad =O_P(n^{1/(2k)})\, o_P(n^{-1/4+\delta _0/2})=o_P(n^{-1/4+\delta /2}), \end{aligned}$$

since \(\sup _{\omega \in (0,2\pi ]} |y_{n,R}^{\tau }(\omega )|\le \sup _{\omega \in (0,2\pi ]} |y_{n,U}^{\tau }(\omega )|+\sup _{\omega \in (0,2\pi ]} |y_{n,R}^{\tau }(\omega )-y_{n,U}^{\tau }(\omega )|=O_P(n^{1/(2k)})\) holds for any \(k\in \mathbb {N}\). Similarly, we obtain \(\sup _{\omega \in (0,2\pi ]} |y_{n,U}^{\tau _2}(\omega )| |y_{n,R}^{\tau _1}(\omega )-y_{n,U}^{\tau _1}(\omega )|=o_P(n^{-1/4+\delta /2})\). This proves (39).

Since we have (37) and (39), using the triangular inequality straightforwardly produces (38).\(\square\)

Lemma 8

If assumption (C) is satisfied, then the CSDK is uniformly Hölder continuous, i.e.,

$$\begin{aligned} |f_{q_{\tau _1},q_{\tau _2}}(\omega _1)- f_{q_{\tau _1},q_{\tau _2}}(\omega _2)|\le C |\omega _1-\omega _2| \end{aligned}$$
(40)

holds uniformly for all \((\tau _1,\tau _2)\in [0,1]^2\).

Proof

The assumption (C) implies that \(|\textbf{Cov}(\mathbb {I}_{A_1}(x_{t_1}),\mathbb {I}_{A_2}(x_{t_2}))|\le K \rho ^{|t_1-t_2|}\) holds for arbitrary intervals \(A_1, A_2\subset \mathbb {R}\) and arbitrary \(t_1,t_2\in \mathbb {Z}\), so does the \(\gamma _k^U(\tau _1,\tau _2)\). By the triangular inequality, we obtain

$$\begin{aligned}&|f_{q_{\tau _1},q_{\tau _2}}(\omega _1)-f_{q_{\tau _1},q_{\tau _2}}(\omega _2)| =\Big |\frac{1}{2\pi }\sum _{k=-\infty }^\infty \gamma _k^U(\tau _1,\tau _2) (\textrm{e}^{-\textrm{i}k\omega _1}-\textrm{e}^{-\textrm{i}k\omega _2})\Big |\\&\quad \le \frac{1}{2\pi }\sum _{k=-\infty }^\infty | \gamma _k^U(\tau _1,\tau _2) | \, |\textrm{e}^{-\textrm{i}k\omega _1}| \, |1-\textrm{e}^{\textrm{i}k(\omega _1-\omega _2)}|\le \frac{K}{2\pi }(\sum _{k=-\infty }^\infty k \rho ^k) \, |\omega _1-\omega _2|=C|\omega _1-\omega _2|, \end{aligned}$$

where the last inequality follows from the inequality \(|\textrm{e}^{\textrm{i} a}-1|\le |a|\).\(\square\)

1.2 Proofs of Theorems 1 and 2

Proof of Theorem 1. Let

$$\begin{aligned} \widetilde{T}_M^{(\tau _1,\tau _2)}=\frac{\pi }{M} \sum _{m=1}^M \text {Im} f_{q_{\tau _1},q_{\tau _2}}\big (\frac{m}{M}\pi \big ) f_{q_{\tau _1},q_{\tau _2}}\big (\frac{m-1}{M}\pi \big ), \end{aligned}$$

and let

$$\begin{aligned} T_M^{(\tau _1,\tau _2)}=\frac{\pi }{M} \sum _{m=1}^M \Big (\text {Im} f_{q_{\tau _1},q_{\tau _2}}\big (\frac{m}{M}\pi \big )\Big )^2. \end{aligned}$$

We have the decomposition

$$\begin{aligned} \sqrt{M}\big (T_{n,M}^{(\tau _1,\tau _2)}-T^{(\tau _1,\tau _2)}\big ) =&\sqrt{M}\big (T_{n,M}^{(\tau _1,\tau _2)}-\widetilde{T}_{n,M}^{(\tau _1,\tau _2)}\big ) +\sqrt{M}\big (\widetilde{T}_{n,M}^{(\tau _1,\tau _2)}-\widetilde{T}_M^{(\tau _1,\tau _2)}\big ) \\&+\sqrt{M}\big (\widetilde{T}_M^{(\tau _1,\tau _2)}-T_M^{(\tau _1,\tau _2)}\big ) +\sqrt{M}\big (T_M^{(\tau _1,\tau _2)}-T^{(\tau _1,\tau _2)}\big ), \end{aligned}$$

where \(\widetilde{T}_{n,M}^{(\tau _1,\tau _2)}\) is given by (12).

To prove (9), it suffices to verify

$$\begin{aligned}&\sqrt{M}\big (T_{n,M}^{(\tau _1,\tau _2)}-\widetilde{T}_{n,M}^{(\tau _1,\tau _2)}\big ){\mathop {\longrightarrow }\limits ^{P}}0, \end{aligned}$$
(41)
$$\begin{aligned}&\sqrt{M}\big (\widetilde{T}_{n,M}^{(\tau _1,\tau _2)}-\widetilde{T}_M^{(\tau _1,\tau _2)}\big )\rightsquigarrow N(0,V^{(\tau _1,\tau _2)}), \end{aligned}$$
(42)
$$\begin{aligned}&\sqrt{M}\big (\widetilde{T}_M^{(\tau _1,\tau _2)}-T_M^{(\tau _1,\tau _2)}\big )\longrightarrow 0 \end{aligned}$$
(43)

and

$$\begin{aligned} \sqrt{M}\big (T_M^{(\tau _1,\tau _2)}-T^{(\tau _1,\tau _2)}\big )\rightarrow 0, \end{aligned}$$
(44)

as n goes to infinity, where “\({\mathop {\longrightarrow }\limits ^{P}}\)” denotes convergence in probability.

Proof of (41). By the triangular inequality, we have

$$\begin{aligned}&\big |\sqrt{M}\big (T_{n,M}^{(\tau _1,\tau _2)}-\widetilde{T}_{n,M}^{(\tau _1,\tau _2)}\big )\big |\\&\qquad \le \frac{\pi }{\sqrt{M}}\sum _{m=1}^M \big |\text {Im}\,I_{n,R}^{\tau _1,\tau _2}\big (\frac{m-1}{M}\pi \big )\big | \big |\text {Im}\,I_{n,R}^{\tau _1,\tau _2}\big (\frac{m}{M}\pi \big )- \text {Im}\,I_{n,U}^{\tau _1,\tau _2}\big (\frac{m}{M}\pi \big ) \big |\\&\qquad \qquad + \frac{\pi }{\sqrt{M}}\sum _{m=1}^M \big |\text {Im}\,I_{n,U}^{\tau _1,\tau _2}\big (\frac{m}{M}\pi \big )\big | \big |\text {Im}\,I_{n,R}^{\tau _1,\tau _2}\big (\frac{m-1}{M}\pi \big )- \text {Im}\,I_{n,U}^{\tau _1,\tau _2}\big (\frac{m-1}{M}\pi \big ) \big |\\&\qquad =: B_{1,n,M}+B_{2,n,M}. \end{aligned}$$

For any \(\delta \in (0,1/2)\), choosing a \(\delta _0\in (0,\delta )\) and taking \(k=[2/(\delta -\delta _0)]\), it follows from Lemma 7 that

$$\begin{aligned} B_{1,n,M}&\le \pi \sqrt{M} \sup _{\omega \in (0,2\pi ]}|I_{n,R}^{\tau _1,\tau _2}(\omega )| \sup _{\omega \in (0,2\pi ]}|I_{n,R}^{\tau _1,\tau _2}(\omega )-I_{n,U}^{\tau _1,\tau _2}(\omega )|\\&=o_P(M^{1/2}/n^{1/4-\delta _0/2-1/k})=o_P\Big (\sqrt{\frac{M}{n^{1/2-\delta }}}\Big ) \end{aligned}$$

holds. Similarly, we also have \(B_{2,n,M}=o_P\Big (\sqrt{\frac{M}{n^{1/2-\delta }}}\Big )\). This proves (41).

Proof of (42). According to Lemma P4.5 of Brillinger (2001), to prove (42), it is required to check that the q-th-order cumulant of \(\sqrt{M}\big (\widetilde{T}_{n,M}^{(\tau _1,\tau _2)}-\widetilde{T}_M^{(\tau _1,\tau _2)}\big )\) behaves in the manner required by the \(N(0,V^{(\tau _1,\tau _2)})\), for each \(q\ge 1\).

By (28), we know \(\textbf{E}\big [\sqrt{M}\big (\widetilde{T}_{n,M}^{(\tau _1,\tau _2)}-\widetilde{T}_M^{(\tau _1,\tau _2)}\big )\big ]=O(\sqrt{M/n})\). This indicates that the first cumulant behaves in the manner required.

From (29), we obtain that for each \(k\in \mathbb {N}\),

$$\begin{aligned}&\textbf{E}\Big [\Big (\sum _{m=1}^M \text {Im}\,I_{n,M}^{\tau _1,\tau _2}\big (\frac{m}{M}\pi \big ) \, \text {Im}\,I_{n,M}^{\tau _1,\tau _2}\big (\frac{m-1}{M}\pi \big )\Big )^2\Big ]\\&\qquad =\textbf{E}\Big [\Big (\sum _{m=1}^M \text {Im}\,I^{\tau _1,\tau _2}\big (\frac{m}{M}\pi \big ) \, \text {Im}\,I^{\tau _1,\tau _2}\big (\frac{m-1}{M}\pi \big )\Big )^2\Big ]+O(\frac{M^2}{\sqrt{n}}) \end{aligned}$$

holds. This implies that

$$\begin{aligned}&\textbf{Var}\big (\sqrt{M}\widetilde{T}_{n,M}^{(\tau _1,\tau _2)}\big ) =V_M^{(\tau _1,\tau _2)}+O\big (\frac{M}{n^{1/2}}\big ), \end{aligned}$$
(45)

with

$$\begin{aligned}&V_M^{(\tau _1,\tau _2)}=\frac{\pi ^2}{M}\sum _{m=1}^M \textbf{Var}\big (\text {Im}\,I^{\tau _1,\tau _2}(\frac{m}{M}\pi ) \text {Im}\, I^{\tau _1,\tau _2}(\frac{m-1}{M}\pi )\big ) \nonumber \\&\quad +2\frac{\pi ^2}{M}\sum _{m=2}^M \textbf{Cov}\big (\text {Im}\, I^{\tau _1,\tau _2}(\frac{m}{M}\pi ) \text {Im}\, I^{\tau _1,\tau _2}(\frac{m-1}{M}\pi ), \text {Im}\, I^{\tau _1,\tau _2}(\frac{m-1}{M}\pi ) \text {Im}\, I^{\tau _1,\tau _2}(\frac{m-2}{M}\pi )\big ). \end{aligned}$$

Employing Lemma 3 in combination with straightforward derivations yields

$$\begin{aligned} V_M^{(\tau _1,\tau _2)}=&\frac{\pi ^2}{M}\sum _{m=1}^M \Big \{A_{\tau _1,\tau _2}\big (\frac{m}{M}\pi \big )A_{\tau _1,\tau _2}\big (\frac{m-1}{M}\pi \big )\nonumber \\&\quad -\big (\textrm{Im} f_{q_{\tau _1},q_{\tau _2}}\big (\frac{m}{M}\pi \big )\big )^2 \big (\textrm{Im} f_{q_{\tau _1},q_{\tau _2}}\big (\frac{m-1}{M}\pi \big )\big )^2\Big \} \nonumber \\&+2\frac{\pi ^2}{M}\sum _{m=2}^M \Big \{\textrm{Im} f_{q_{\tau _1},q_{\tau _2}}\big (\frac{m}{M}\pi \big ) A_{\tau _1,\tau _2}\big (\frac{m-1}{M}\pi \big )\textrm{Im} f_{q_{\tau _1},q_{\tau _2}}\big (\frac{m-2}{M}\pi \big ) \nonumber \\&\quad -\textrm{Im} f_{q_{\tau _1},q_{\tau _2}}\big (\frac{m}{M}\pi \big )\big (\textrm{Im} f_{q_{\tau _1},q_{\tau _2}}\big (\frac{m-1}{M}\pi \big )\big )^2\textrm{Im} f_{q_{\tau _1},q_{\tau _2}}\big (\frac{m-2}{M}\pi \big )\Big \}, \end{aligned}$$
(46)

where \(A_{\tau _1,\tau _2}(\cdot )\) is defined in (22). As M goes to infinity, we have an alternative expression of (46) as

$$\begin{aligned}&V_M^{(\tau _1,\tau _2)}=\frac{\pi ^2}{M}\sum _{m=1}^M \Big \{\Big (A_{\tau _1,\tau _2}\big (\frac{m}{M}\pi \big )\Big )^2 -\Big (\textrm{Im} f_{q_{\tau _1},q_{\tau _2}}\big (\frac{m}{M}\pi \big )\Big )^4\Big \} \nonumber \\&\qquad +2\frac{\pi ^2}{M}\sum _{m=2}^M \Big \{\Big (\textrm{Im} f_{q_{\tau _1},q_{\tau _2}}\big (\frac{m}{M}\pi \big ) \Big )^2 A_{\tau _1,\tau _2}\big (\frac{m}{M}\pi \big ) -\Big (\textrm{Im} f_{q_{\tau _1},q_{\tau _2}}\big (\frac{m}{M}\pi \big )\Big )^4\Big \}+o(1) \nonumber \\&\quad = V^{(\tau _1,\tau _2)}+o(1). \end{aligned}$$
(47)

Combining (45) with (47) shows that the second-order cumulant of \(\sqrt{M}\big (\widetilde{T}_{n,M}^{(\tau _1,\tau _2)}-\widetilde{T}_M^{(\tau _1,\tau _2)}\big )\) behaves in the manner required.

Finally, we prove the equality

$$\begin{aligned} \textrm{cum}_q(\sqrt{M}\widetilde{T}_{n,M}^{(\tau _1,\tau _2)})=O\big (\frac{M^{q/2}}{n^{2q-4}}\big ) \end{aligned}$$
(48)

holds for general \(q\ge 3\).

Since the equality

$$\begin{aligned} \textrm{cum}_q(\sqrt{M}\widetilde{T}_{n,M}^{(\tau _1,\tau _2)})=&\frac{\pi ^q}{M^{q/2}}\sum _{m_1=1}^M \cdots \sum _{m_q=1}^M \Big \{\textrm{cum} \Big (\text {Im}\,I_{n,U}^{\tau _1,\tau _2}\big (\frac{m_1}{M}\pi \big ) \, \text {Im}\,I_{n,U}^{\tau _1,\tau _2}\big (\frac{m_1-1}{M}\pi \big ), \\&\quad \cdots , \text {Im}\,I_{n,U}^{\tau _1,\tau _2}\big (\frac{m_q}{M}\pi \big ) \, \text {Im}\,I_{n,U}^{\tau _1,\tau _2}\big (\frac{m_q-1}{M}\pi \big )\Big )\Big \} \end{aligned}$$

holds, to prove (48), it suffices to check

$$\begin{aligned} \textrm{cum} \big (\text {Im}\,I_{n,U}^{\tau _1,\tau _2}(\omega _1) \, \text {Im}\,I_{n,U}^{\tau _1,\tau _2}(\omega _2), \ldots , \text {Im}\,I_{n,U}^{\tau _1,\tau _2}(\omega _{2q-1}) \, \text {Im}\,I_{n,U}^{\tau _1,\tau _2}(\omega _{2q})\big )=O\big (n^{4-2q}\big ) \end{aligned}$$
(49)

holds uniformly for \(\omega _1,\ldots ,\omega _{2q}\in (0,\pi ]\). According to (30), to check (49), we need only to verify

$$\begin{aligned}&\textrm{cum} \big (y_{n,U}^{\tau _1}(\omega _1)y_{n,U}^{\tau _2}(\omega _1) \, y_{n,U}^{\tau _1}(\omega _2)y_{n,U}^{\tau _2}(\omega _2), \ldots , y_{n,U}^{\tau _1}(\omega _{2q-1})y_{n,U}^{\tau _2}(\omega _{2q-1}) \, y_{n,U}^{\tau _1}(\omega _{2q})y_{n,U}^{\tau _2}(\omega _{2q})\big )\nonumber \\&=O\big (n^{4-2q}\big ) \end{aligned}$$
(50)

holds uniformly for \(\omega _1,\ldots ,\omega _{2q}\in (0,\pi ]\). Since we have established (26), using Theorem 2.3.2 of Brillinger (2001) yields (50). This proves (48) and indicates that the q-th-order (\(q\ge 3\)) cumulant of \(\sqrt{M}\big (\widetilde{T}_{n,M}^{(\tau _1,\tau _2)}-\widetilde{T}_M^{(\tau _1,\tau _2)}\big )\) behaves in the manner required.

Now, all the cumulants of \(\sqrt{M}\big (\widetilde{T}_{n,M}^{(\tau _1,\tau _2)}-\widetilde{T}_M^{(\tau _1,\tau _2)}\big )\) behave in the manner required by the \(N(0,V^{(\tau _1,\tau _2)})\). This proves (42).

Proof of (43). Employing Lemmas 1 and 8 in combination with the triangular inequality, we have that

$$\begin{aligned}&\sqrt{M}\big |\widetilde{T}_M^{(\tau _1,\tau _2)}-T_M^{(\tau _1,\tau _2)}\big | \nonumber \\&\qquad \le \frac{\pi }{\sqrt{M}} \sum _{m=1}^M \big |\text {Im} f_{q_{\tau _1},q_{\tau _2}}\big (\frac{m}{M}\pi \big )\big |\,\Big |\text {Im} f_{q_{\tau _1},q_{\tau _2}}\big (\frac{m}{M}\pi \big )-\text {Im} f_{q_{\tau _1},q_{\tau _2}}\big (\frac{m-1}{M}\pi \big )\Big |\nonumber \\&\qquad \le C \frac{1}{\sqrt{M}}\longrightarrow 0, \end{aligned}$$
(51)

as M goes to infinity.

Proof of (44). According to the first mean value theorem for definite integrals (e.g., Comenetz 2002, pp. 159), we obtain

$$\begin{aligned}&\sqrt{M}\big (T_M^{(\tau _1,\tau _2)}-T^{(\tau _1,\tau _2)}\big )\nonumber \\&\qquad = \sqrt{M} \sum _{m=1}^M \Big \{\big (\text {Im} f_{q_{\tau _1},q_{\tau _2}}\big (\frac{m}{M}\pi \big )\big )^2 \frac{\pi }{M}-\int _{\frac{m-1}{M}\pi }^{\frac{m}{M}\pi } \big (\text {Im} f_{q_{\tau _1},q_{\tau _2}}(\omega )\big )^2\,\text {d}\omega \Big \}\nonumber \\&\qquad =\frac{\pi }{\sqrt{M}} \sum _{m=1}^M \Big (\big (\text {Im} f_{q_{\tau _1},q_{\tau _2}}\big (\frac{m}{M}\pi \big )\big )^2 -\big (\text {Im} f_{q_{\tau _1},q_{\tau _2}}\big (\xi _m\big )\big )^2 \Big ), \end{aligned}$$

where \(\xi _m\in (\frac{m-1}{M}\pi ,\frac{m}{M}\pi )\), \(m=1,\ldots ,M\). Then, by the triangular inequality and the Hölder continuity (40), we have

$$\begin{aligned} \sqrt{M}\big |T_M^{(\tau _1,\tau _2)}-T^{(\tau _1,\tau _2)}\big | \le&C \frac{1}{\sqrt{M}} \sum _{m=1}^M \Big \{\Big (\big |\text {Im} f_{q_{\tau _1},q_{\tau _2}}\big (\frac{m}{M}\pi \big )\big |+\big |\text {Im} f_{q_{\tau _1},q_{\tau _2}}\big (\xi _m\big )\big |\Big )\nonumber \\&\qquad \times \Big |\text {Im} f_{q_{\tau _1},q_{\tau _2}}\big (\frac{m}{M}\pi \big )-\text {Im} f_{q_{\tau _1},q_{\tau _2}}\big (\xi _m\big )\Big |\Big \} \nonumber \\ \le&C \frac{\pi }{\sqrt{M}} \sum _{m=1}^M \Big |\frac{m}{M}\pi -\xi _m\Big | \le C \frac{1}{\sqrt{M}}\longrightarrow 0, \end{aligned}$$
(52)

as M goes to infinity. This completes the proof.

Proof of Theorem 2. Under the assumptions of Theorem 2, it follows from Theorem 3.5 of Kley et al. (2016) that \(\hat{G}_{n,R}(\tau _1,\tau _2;\omega )\) is a consistent estimator of \(f_{q_{\tau _1},q_{\tau _2}}(\omega )\) for each pair of levels \((\tau _1, \tau _2)\). Then, Combining Theorem 1, the continuous mapping theorem and the definition of definite integral, we obtain the results of Theorem 2.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S. A copula spectral test for pairwise time reversibility. Ann Inst Stat Math 75, 705–729 (2023). https://doi.org/10.1007/s10463-022-00859-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-022-00859-x

Keywords

Navigation