Skip to main content
Log in

The variable selection by the Dantzig selector for Cox’s proportional hazards model

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

The proportional hazards model proposed by D. R. Cox in a high-dimensional and sparse setting is discussed. The regression parameter is estimated by the Dantzig selector, which will be proved to have the variable selection consistency. This fact enables us to reduce the dimension of the parameter and to construct asymptotically normal estimators for the regression parameter and the cumulative baseline hazard function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Andersen, P. K., & Gill, R. D. (1982). Cox’s regression model for counting processes: A large sample study. Annals of Statististics, 10(4), 1100–1120.

  • Antoniadis, A., Fryzlewicz, P., & Letué, F. (2010). The Dantzig selector in Cox’s proportional hazards model. Scandinavian Journal of Statistics, 37(4), 531–552.

  • Bickel, P. J., Ritov, Y., & Tsybakov, A. B. (2009). Simultaneous analysis of lasso and Dantzig selector. Annals of Statististics, 37(4), 1705–1732.

    MathSciNet  MATH  Google Scholar 

  • Bradic, J., Fan, J., & Jiang, J. (2011). Regularization for Cox’s proportional hazards model with NP-dimensionality. Annals of Statististics, 39(6), 3092–3120.

  • Candés, E., & Tao, T. (2007). The Dantzig selector: Statistical estimation when \(p\) is much larger than \(n\). Annals of Statististics, 35(6), 2313–2351.

    MathSciNet  MATH  Google Scholar 

  • Cox, D. R. (1972). Regression models and life tables (with discussion). Journal of the Royal Statistical Society: Series B, 34, 187–220.

    MathSciNet  MATH  Google Scholar 

  • Fan, Y., Gai, Y., & Zhu, L. (2016). Asymtotics of Dantzig selector for a general single-index model. Journal of Systems Science and Complexity, 29(4), 1123–1144.

    Article  MathSciNet  Google Scholar 

  • Fleming, T. R., & Harrington, D. P. (1991). Counting processes and survival analysis. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. Wiley.

    MATH  Google Scholar 

  • Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, 33(1), 1–22.

    Article  Google Scholar 

  • Fujimori, K. (2019). The Dantzig selector for a linear model of diffusion processes. Statistical Inference for Stochastic Processes, 22(3), 475–498.

    Article  MathSciNet  Google Scholar 

  • Fujimori, K., & Nishiyama, Y. (2017). The \(l_q\) consistency of the Dantzig selector for Cox’s proportional hazards model. Journal of Statistical Planning and Inference, 181, 62–70.

  • Ganzfried, B. F., Riester, M., Haibe-Kains, B., Risch, T., Tyekucheva, S., Jazic, I., Wang, X. V., Ahmadifar, M., Birrer, M. J., Parmigiani, G., & Huttenhower, C. (2013). curatedOvarianData: Clinically annotated data for the ovarian cancer transcriptome. Database, 2013, bat013.

    Article  Google Scholar 

  • Honda, T., & Härdle, W. K. (2013). Variable selection in Cox regression model with varying coefficients. Journal of Statistical Planning and Inference, 148, 67–81.

    Article  MathSciNet  Google Scholar 

  • Huang, J., Sun, T., Ying, Z., Yu, Y., & Zhang, C.-H. (2013). Oracle inequalities for the LASSO in the Cox model. Annals of Statistics, 41(3), 1142–1165.

    Article  MathSciNet  Google Scholar 

  • Simon, N., Friedman, J., Hastie, T., & Tibshirani, R. (2011). Regularization paths for Cox’s proportional hazards model via coordinate descent. Journal of Statistical Software, 39(5), 1–13.

  • Tibshirani, R. (1997). The lasso method for variable selection in the Cox model. Statistics in Medicine, 16, 385–395.

    Article  Google Scholar 

  • van de Geer, S. (1995). Exponential inequalities for martingales, with application to maximum likelihood estimation for counting processes. Annals of Statistics, 23(5), 1779–1801.

    MathSciNet  MATH  Google Scholar 

  • van de Geer, S. A., & Bühlmann, P. (2009). On the conditions used to prove oracle results for the Lasso. Electronic Journal of Statistics, 3, 1360–1392.

    MathSciNet  MATH  Google Scholar 

  • van der Vaart, A. W., & Wellner, J. A. (1996). Weak Convergence and Empirical Processes. With Applications to Statistics. Springer Series in Statistics. Springer.

    Book  Google Scholar 

  • Yu, Y. (2010). High-dimensional variable selection in Cox model with generalized Lasso-type convex penalty. Preprint.

Download references

Acknowledgements

The author is grateful to the associate editor and two reviewers for their instructive comments to improve this paper. The author thanks Prof. Y. Nishiyama of Waseda University and Dr. K. Tsukuda of Kyushu University for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kou Fujimori.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma 11

Under the condition that \(\hat{\beta }_{n \hat{T}_n^c}^{(2)} = 0\), we use Taylor expansion to deduce that

$$\begin{aligned} J_{n \hat{T}_n, \hat{T}_n}(\beta _0) \left( \hat{\beta }_{n \hat{T}_n}^{(2)}-\beta _{0 \hat{T}_n}\right) 1_{\{\hat{T}_n = T_0\}} = U_n(\beta _0)_{\hat{T}_n} 1_{\{\hat{T}_n=T_0\}} +o_p(\Vert \hat{\beta }_{n \hat{T}_n}^{(2)}- \beta _{0 \hat{T}_n}\Vert _2). \end{aligned}$$

Therefore, under Assumption 9, it follows from Lemma 10 that

$$\begin{aligned} \mathcal {I}\left( \hat{\beta }_{n \hat{T}_n}^{(2)}-\beta _{0 \hat{T}_n}\right) 1_{\{\hat{T}_n=T_0\}} = U_n(\beta _0)_{\hat{T}_n}1_{\{\hat{T}_n=T_0\}} +o_p(\Vert \hat{\beta }_{n \hat{T}_n}^{(2)} - \beta _{0 \hat{T}_n}\Vert _2) + o_p(1). \end{aligned}$$

Since \(\mathcal {I}\) is assumed to be non-singular and \(P(\hat{T}_n = T_0) \rightarrow 1\) as \(n \rightarrow \infty \) by Theorem 7, we obtain the conclusion. \(\square \)

Proof of Theorem 13

It follows from the Taylor expansion that

$$\begin{aligned} \left\{ U_{n \hat{T}_n}(\hat{\beta }_{n \hat{T}_n}^{(2)}) - U_{n T_0}(\beta _{0 T_0})\right\} 1_{\{\hat{T}_n = T_0\}} = -J_{n T_0,T_0}(\beta _{n T_0}^*)(\hat{\beta }_{n \hat{T}_n}^{(2)} - \beta _{0 T_0}) 1_{\{\hat{T}_n = T_0\}}, \end{aligned}$$

where \(\beta _n^*\) is the point between \(\hat{\beta }_n^{(2)}\) and \(\beta _0\). Then, the assertion is obtained by using Slutsky’s theorem and the corresponding result from Andersen and Gill (1982). \(\square \)

Proof of Theorem 15

We have that

$$\begin{aligned}&\sqrt{n}\{\hat{\Lambda }(t) - \Lambda _0(t)\}1_{\{\hat{T}_n = T_0\}}\\&\quad = \left[ H_{n T_0}(\beta _{n T_0}^*,t)^\top \sqrt{n} (\hat{\beta }_{n \hat{T}_n}^{(2)}-\beta _{0 T_0}) + \sqrt{n} W_n(t)\right] 1_{\{\hat{T}_n = T_0\}} + o_p(1). \end{aligned}$$

We can use the fact (10) to deduce that

$$\begin{aligned}&\sqrt{n}\{\hat{\Lambda }(t)-\Lambda _0(t)\}1_{\{\hat{T}_n = T_0\}}\\&\qquad + \sqrt{n} \int _0^t (\hat{\beta }_{n\hat{T}_n}^{(2)}-\beta _{0T_0})^\top \frac{s^{(1)}}{s^{(0)}}(\beta _{0T_0},s) \lambda _0(s) \mathrm{d}s 1_{\{\hat{T}_n = T_0\}}\\&\quad = \sqrt{n} W_n(t) 1_{\{\hat{T}_n = T_0\}} + o_p(1), \end{aligned}$$

where

$$\begin{aligned} W_n(t) = \sqrt{n} \int _0^t \frac{d\bar{M}(s)}{S_n^{(0)}(\beta _0,s)},\quad t \in [0,1]. \end{aligned}$$

Then, the conclusion is obtained by using Slutsky’s theorem and the corresponding result from Andersen and Gill (1982). \(\square \)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujimori, K. The variable selection by the Dantzig selector for Cox’s proportional hazards model. Ann Inst Stat Math 74, 515–537 (2022). https://doi.org/10.1007/s10463-021-00807-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-021-00807-1

Keywords

Navigation