Skip to main content
Log in

Vision in robot soccer: a review

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

This paper will give readers an overview of the vision system used on Robot Soccer systems. Firstly, it lists out the positioning of the cameras that are used on a robot soccer system both for FIRA and RoboCup. Here various position of camera placement is explained; among them are the global and local visions. This is further broken down to center and side positioning for global vision. For local vision, it is divided into three, namely omni-directional, binocular/stereo and monocular. Next, image processing algorithms will be explained and related reference with their advantages and disadvantages. The reviewed algorithms are Kalman Filter, CamShift and Optical Flow. Brief description of each algorithm is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Aires KRT, Santana AM, Medeiros AAD (2008) Optical flow using color information: preliminary results. In: Proceedings of the 2008 ACM symposium on applied computing, ACM, pp 1607–1611

  • Arulampalam MS, Maskell S, Gordon N, Clapp T (2002) A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. Signal Process IEEE Trans 50(2):174–188

    Article  Google Scholar 

  • Back SM, Kuc TY (1998) Dynamic visual servoing of mobile robots based on learning control inputs. In: Systems, man, and cybernetics, 1998. 1998 IEEE international conference on vol 4, IEEE, pp 3514–3519

  • Baltes J (2002) Doraemon: object orientation and id without additional markers. In: 2nd IFAC conference on mechatronic systems, pp 845–850

  • Baltes J, Anderson J (2007) Intelligent global vision for teams of mobile robots. Advanced Robotic Systems International, Vienna, Austria

  • Bradski GR (1998) Computer vision face tracking for use in a perceptual user interface. Interface 2(2):214–219

    Google Scholar 

  • Bradski G, Kaehler A (2008) OpenCV. O Reilly

  • Breuer T, Giorgana Macedo GR, Hartanto R, Hochgeschwender N, Holz D, Hegger F, Jin Z, üller CM, Paulus J, Reckhaus M et al (2011) Johnny: an autonomous service robot for domestic environments. J Intell Robotic Syst 66:245–272

    Google Scholar 

  • Buxton BF, Buxton H (1983) Monocular depth perception from optical flow by space time signal processing. Proc R Soc Lond Ser B Biol Sci 218(1210):27–47

    Article  Google Scholar 

  • Caselles V, Kimmel R (1997) Geodesic active contours. Int J Comput Vis 22(1):61–79

    Article  MATH  Google Scholar 

  • Catalano G, Gallace A, Kim B, Pedro S, Kim FSB (2009) Optical flow. Technical report, March 2009

  • Chalup S, Creek N, Freeston L, Lovell N, Marshall J, Middleton R, Murch C, Quinlan M, Shanks G, Stanton C et al (2002) When nubots attack! the 2002 nubots team report. Final report, Newcastle Robotics Laboratory. The University of Newcastle, NSW, Australia

  • Cheng Y (1995) Mean shift, mode seeking and clustering. Pattern Anal Mach Intell IEEE Trans 17(8):790–799

    Article  Google Scholar 

  • Cheng G, Zelinsky A (1998) Real-time vision processing for a soccer playing mobile robot. In: RoboCup-97: robot soccer world cup I, 1395:144–155

  • Chestnutt J, Michel P, Kuffner J, Kanade T (2007) Locomotion among dynamic obstacles for the honda asimo. In: Intelligent robots and systems 2007, IROS 2007 IEEE/RSJ international conference on, pp 2572–2573, 29 Nov. 2 2007

  • Chinapirom T, Witkowski U, Rueckert U (2009) Vision module for mini-robots providing optical flow processing for obstacle avoidance. Adv Robotics 5744:208–219

    Google Scholar 

  • Comaniciu D, Ramesh V, Meer P (2003) Kernel-based object tracking. Pattern Anal Mach Intell IEEE Trans 25(5):564–577

    Article  Google Scholar 

  • Comaniciu D, Meer P (1999) Mean shift analysis and applications. In: Computer vision 1999, The proceedings of the seventh IEEE international conference on vol 2, IEEE, pp 1197–1203

  • D’ Andrea R, Kalinar-Nagy T, Ganguly P, Babish M (2001) The cornell robocup team. In: Stone P, Balch T, Kraetzschmar G (eds) RoboCup 2000: robot soccer world cup IV, vol 2019 of Lecture Notes in Computer Science. Springer, Berlin, pp 41–51

  • Dietl M, Gutmann JS, Nebel B (2001) Cooperative sensing in dynamic environments. In: Intelligent robots and systems 2001 proceedings 2001 IEEE/RSJ international conference on vol 3, IEEE, pp 1706–1713

  • Dietl M, Gutmann JS, Nebel B (2002) Cs freiburg: global view by cooperative sensing. In: RoboCup 2001, robot soccer world cup V, 2377:133–143

  • Freeston L (2002) Applications of the Kalman filter algorithm to robot localization and world modeling. Technical report , University of Newcastle, NSW, Australia

  • Freund Y, Schapire R (1995) A decision-theoretic generalization of on-line learning and an application to boosting. In: Computational learning theory, Springer, pp 23–37

  • Fukunaga K (1990) Introduction to statistical pattern recognition, Academic Pr

  • Gibson JJ (1950) The perception of the visual world. University of Michigan

  • Gorji A, Menhaj MB (2007) Multiple target tracking for mobile robots using the jpdaf algorithm. In: Tools with artificial intelligence 2007. ICTAI 2007,19th IEEE international conference on vol 1, IEEE, pp 137–145

  • Grabowiecki J (1919) Vehicle-wheel. US Patent 1,305,535 3 June 1919

  • Grassi Junior V, Okamoto Junior J (2006) Development of an omni-directional vision system. J Braz Soc Mech Sci Eng 28:125–134

    Article  Google Scholar 

  • Hargrave PJ (1989) A tutorial introduction to kalman filtering. In: Kalman filters: introduction, applications and future developments IEE colloquium on, pp 1–1, IET

  • Harris C, Stephens M (1988) A combined corner and edge detector. In: Alvey vision conference, vol 15, Manchester, UK, p 50

  • Ho HT, Goecke R (2008) Optical flow estimation using fourier-mellin transform. In: Computer vision and pattern recognition, 2008 CVPR 2008 IEEE conference on, IEEE, pp 1–8

  • Horn BKP, Schunck BG (1981) Determining optical flow. Artif Intell 17(1–3):185–203

    Article  Google Scholar 

  • Huang YH, Wang JL, Jia XM (2011) Research of soccer robot target tracking algorithm based on improved camshift. Adv Mater Res 221:610–614

    Article  Google Scholar 

  • Isard M, Blake A (1998) Condensation conditional density propagation for visual tracking. Int J Comput Vis 29(1):5–28

    Article  Google Scholar 

  • Jang G, Kim S, Lee W, Kweon I (2002) Color landmark based self-localization for indoor mobile robots. In: Proceedings-IEEE international conference on robotics and automation, vol 1, Citeseer, pp 1037–1042

  • Jepson A, Fleet D, Black M (2002) A layered motion representation with occlusion and compact spatial support. Comput Vis ECCV 2002, 2350:692–706

    Google Scholar 

  • Jing-chuan XUNW (2009) A real-time and robust human-following algorithm for mobile robot. Microcomput Inf 2:56–62

    Google Scholar 

  • Kalman RE (1960) A new approach to linear filtering and prediction problems. J Eng 82(Series D):35–45

    Google Scholar 

  • Kitano H, Asada M, Kuniyoshi Y, Noda I, Osawa E (1997) Robocup: the robot world cup initiative. In: Proceedings of the first international conference on autonomous agents, ACM, pp 340–347

  • Kögler MK, Obst O (2004) Simulation league, The next generation. In: RoboCup 2003 robot soccer world cup VII, 3020:458–469

  • Liang Y (2000) Phase-correlation motion estimation EE392J project report

  • Liu Y, Zhu JJ, Williams II RL, Wu J (2008) Omni-directional mobile robot controller based on trajectory linearization. Robotics Auton Syst 56(5):461–479

    Article  Google Scholar 

  • Lowe DG (1999) Object recognition from local scale-invariant features. In: Computer vision 1999 the proceedings of the seventh IEEE international conference on, vol 2, IEEE, pp 1150–1157

  • Lucas BD, Kanade T (1998) An iterative image registration technique with an application to stereo vision. In: Proceedings DARPA image understanding, workshop, pp 121–130

  • Monnet A, Mittal A, Paragios N, Ramesh V (2003) Background modelling and subtraction of dynamic scenes. In: International conference on computer vision nice France

  • Moravec H P (1979) Visual mapping by a robot rover. In: Proceedings of the 6th international joint conference on artificial intelligence, vol 1, Morgan Kaufmann Publishers Inc, pp 598–600

  • Nadarajah S, Sundaraj K (2011) A survey on team strategies in robot soccer: team strategies and role description. Artif Intell Rev 1–34

  • Nadarajah S, Sundaraj K (2012) Wireless communication in robot soccer: a case study of existing technologies. In: Sustainable utilization and development in engineering and technology (STUDENT) 2012 IEEE conference on, IEEE, pp 33–38

  • Novak G, Bais A, Mahlknecic S (2004) Simple stereo vision system for real-time object recognition for an autonomous mobile robot. In: Computational cybernetics 2004 ICCC 2004 second IEEE international conference on, IEEE, pp 213–216

  • Nummiaro K, Koller-Meier E, Van Gool L (2003) An adaptive color-based particle filter. Image Vis Comput 21(1):99–110

    Article  Google Scholar 

  • Ogino M, Kikuchi M, Ooga J, Aono M, Asada M (2005) Optic flow based skill learning for a humanoid to trap, approach to and pass a ball. In: RoboCup 2004, robot soccer world cup VIII, 3276:323–334

  • Oliver NM, Pentland AP (2000) Towards perceptual intelligence: statistical modeling of human individual and interactive behaviors. PhD thesis Massachusetts Institute of Technology, Department of Architecture

  • Papageorgiou CP, Oren M, Poggio T (1998) A general framework for object detection. In: Computer vision 1998 sixth international conference on, IEEE, pp 555–562

  • Pisarevsky V (2007) Opencv object detection: theory and practice. Intel Corporation, Software and Solutions Group, Slide presentation

  • PointGreyResearch (2011a) Bumblebee2 specification. In: Bumblebee2 CCD camera. http://www.ptgrey.com/products/bumblebee2/bumblebee2stereocamera.asp

  • PointGreyResearch (2011b) Dragonfly2 specification. In: Dragonfly2 CCD camera http://www.ptgrey.com/products/dragonfly2/dragonfly2firewirecamera.asp

  • Porta M (2007) Human-computer input and output techniques: an analysis of current research and promising applications. Artif Intell Rev 28(3):197–226

    Article  Google Scholar 

  • Ribeiro MI (2004) Kalman and extended Kalman filters: concept, derivation and properties. Technical report, Institute for Systems and Robotics, Lisboa

  • Rowley HA, Balujam S, Kanade T (1998) Neural network-based face detection. Pattern Anal Mach Intell IEEE Trans 20(1):23–38

    Article  Google Scholar 

  • Ruiz-del Solar J, Vallejos PA (2007) Motion detection and object tracking for an AIBO Robot Soccer Player. Robotic Soccer

  • Schmitt T, Beetz M, Hanek R, Buck S, et al (2002) Watch their moves: applying probabilistic multiple object tracking to autonomous robot soccer. In: Proceedings of the National conference on artificial intelligence, Cambridge, Menlo Park, CA, AAAI Press, MIT Press MA, London, pp 599–604, 1999

  • Schmudderich J, Willert V, Eggert J, Rebhan S, Goerick C, Sagerer G, Korner E (2008) Estimating object proper motion using optical flow kinematics and depth information. Syst Man Cybern Part B Cybern IEEE Trans 38(4):1139–1151

    Article  Google Scholar 

  • Shi J, Malik J (2000) Normalized cuts and image segmentation. Pattern Anal Mach Intell IEEE Trans 22(8):888–905

    Article  Google Scholar 

  • Simmons R (2003) Grace an autonomous robot for the aaai robot challenge. Technical report DTIC Document

  • Stauffer C, Grimson WEL (2000) Learning patterns of activity using real-time tracking. Pattern Anal Mach Intell IEEE Trans 22(8):747–757

    Article  Google Scholar 

  • Thrun S (2002) Particle filters in robotics. In: Proceedings of the eighteenth conference on uncertainty in artificial intelligence, Morgan Kaufmann Publishers Inc, pp 511–518

  • Tomasi C, Kanade T (1991) Detection and tracking of point features School of Computer Science, Carnegie Mellon University

  • Tong G, Xiao W, Xu X (2000) Design of robocup robot soccer global vision system. In: Intelligent control and automation, 2000. In: Proceedings of the 3rd world congress on vol 1, IEEE, pp 212–214

  • Toyama K, Krumm J, Brumitt B, Meyers B (1999) Wallflower: principles and practice of background maintenance. In: Computer vision 1999, the proceedings of the seventh IEEE international conference on vol 1, IEEE, pp 255–261

  • Treptow A, Zell A (2004) Real-time object tracking for soccer-robots without color information. Robotics Auton Syst 48(1):41–48

    Article  Google Scholar 

  • Usai PC (1996) In: Nowell-Smith G(ed) Origins and survival. Oxford University Press

  • Veloso MM (2002) Entertainment robotics. Commun ACM 45(3):59–63

    Article  Google Scholar 

  • Wahab MNA, Sivadev N, Sundaraj K (2011) Target distance estimation using monocular vision system for mobile robot. In: Open systems (ICOS) 2011 IEEE conference on, IEEE, pp 11–15

  • Welch G, Bishop G (2001) Design. An introduction to the Kalman filter 7(1):1–16

    Google Scholar 

  • WillowGarageTeam (2010) Motion analysis and object tracking. In: OpenCV v2.1 documentation. http://opencv.willowgarage.com/documentation/python/motionanalysisandobjecttracking.html

  • Yilmaz A, Javed O, Shah M (2006) Object tracking: a survey. Acm Compu Surv (CSUR) 38(4):13

    Google Scholar 

  • Yi-wei F, Ge G, Chao-qun Z (2008) Object tracking by Kalman filtering and recursive least squares based on 2d image motion. In: Computational intelligence and design 2008, ISCID’08 international symposium on, vol 2, IEEE, pp 106–109

  • Zhao M, Geng S (2011) Moving object tracking for robots based on color and shape. Zhengzhou Univ Light Ind (Nat Sci) 3:31–42

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivadev Nadarajah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadarajah, S., Sundaraj, K. Vision in robot soccer: a review. Artif Intell Rev 44, 289–310 (2015). https://doi.org/10.1007/s10462-013-9401-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-013-9401-3

Keywords

Navigation