Ayal, S., & Bayth Marom, R. (2014). The effects of mental steps and compatibility on Bayesian reasoning. Judgment and Decision Making, 9, 226–242.
Google Scholar
Binder, K., Krauss, S., & Bruckmaier, G. (2015). Effects of visualizing statistical information: An empirical study on tree diagrams and 2 × 2 tables. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2015.01186.
Article
Google Scholar
Binder, K., Krauss, S., Bruckmaier, G., & Marienhagen, J. (2018). Visualizing the Bayesian 2-test case: The effect of tree diagrams on medical decision making. PLoS ONE. https://doi.org/10.1371/journal.pone.0195029.
Article
Google Scholar
Binder, K., Krauss, S., & Wiesner, P. (2020). A new visualization for probabilistic situations containing two binary events: The frequency net. Frontiers in Psychology, 11, 66. https://doi.org/10.3389/fpsyg.2020.00750.
Article
Google Scholar
Böcherer-Linder, K., & Eichler, A. (2017). The impact of visualizing nested sets: An empirical study on tree diagrams and unit squares. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2016.02026.
Article
Google Scholar
Brase, G. L. (2008). Pictorial representations in statistical reasoning. Applied Cognitive Psychology, 23, 369–381. https://doi.org/10.1002/acp.1460.
Article
Google Scholar
Brase, G. L. (2014). The power of representation and interpretation: Doubling statistical reasoning performance with icons and frequentist interpretations of ambiguous numbers. Journal of Cognitive Psychology, 26, 81–97. https://doi.org/10.1080/20445911.2013.861840.
Article
Google Scholar
Braun, L. T., Borrmann, K. F., Lottspeich, C., Heinrich, D. A., Kiesewetter, J., Fischer, M. R., et al. (2019). Scaffolding clinical reasoning of medical students with virtual patients: Effects on diagnostic accuracy, efficiency, and errors. Diagnosis, 6, 137–149. https://doi.org/10.1515/dx-2018-0090.
Article
Google Scholar
Braun, L. T., Zottmann, J. M., Adolf, C., Lottspeich, C., Then, C., Wirth, S., et al. (2017). Representation scaffolds improve diagnostic efficiency in medical students. Medical Education, 51, 1118–1126. https://doi.org/10.1111/medu.13355.
Article
Google Scholar
Bruckmaier, G., Binder, K., Krauss, S., & Kufner, H.-M. (2019). An eye-tracking study of statistical reasoning with tree diagrams and 2 × 2 tables. Frontiers in Psychology, 10, 303. https://doi.org/10.3389/fpsyg.2019.00632.
Article
Google Scholar
Budgett, S., Pfannkuch, M., & Franklin, C. (2016). Building conceptual understanding of probability models: Visualizing chance. In C. R. Hirsch & A. R. McDuffie (Eds.), Annual perspectives in mathematics education 2016: Mathematical modeling and modeling mathematics (pp. 37–49). Reston, VA: Natl Coun Teachers Math.
Google Scholar
Eddy, D. M. (1982). Probabilistic reasoning in clinical medicine: Problems and opportunities. In D. Kahneman, P. Slovic, & A. Tversky (Eds.), Judgment under uncertainty: Heuristics and biases (pp. 249–267). New York: Cambridge University Press.
Chapter
Google Scholar
Eichler, A., Böcherer-Linder, K., & Vogel, M. (2020). Different visualizations cause different strategies when dealing with Bayesian situations. Frontiers in Psychology, 11, 65.
Article
Google Scholar
Fischer, M. R., Aulinger, B., & Baehring, T. (1999). Computer-based-Training (CBT). Fallorientiertes Lernen am PC mit dem CASUS/ProMediWeb-System. Deutsche medizinische Wochenschrift (1946), 124, 1401. https://doi.org/10.1055/s-2007-1024550.
Article
Google Scholar
Friederichs, H., Ligges, S., & Weissenstein, A. (2014). Using tree diagrams without numerical values in addition to relative numbers improves students’ numeracy skills: A randomized study in medical education. Medical Decision Making, 34, 253–257. https://doi.org/10.1177/0272989X13504499.
Article
Google Scholar
Galesic, M., Garcia-Retamero, R., & Gigerenzer, G. (2009). Using icon arrays to communicate medical risks: Overcoming low numeracy. Health Psychology, 28, 210–216 https://doi.org/10.1037/a0014474
Article
Google Scholar
Garcia-Retamero, R., & Hoffrage, U. (2013). Visual representation of statistical information improves diagnostic inferences in doctors and their patients. Social Science and Medicine, 83, 27–33. https://doi.org/10.1016/j.socscimed.2013.01.034.
Article
Google Scholar
Gigerenzer, G., & Gray, J. A. M. (2011). Launching the century of the patient. In G. Gigerenzer & J. A. M. Gray (Eds.), Better doctors, better patients, better decisions: Envisioning health care 2020 (pp. 3–28). Cambridge, MA: MIT.
Chapter
Google Scholar
Gigerenzer, G., & Hoffrage, U. (1995). How to improve Bayesian reasoning without instruction: Frequency formats. Psychological Review, 102, 684–704. https://doi.org/10.1037/0033295X.102.4.684.
Article
Google Scholar
Hoffrage, U., & Gigerenzer, G. (1998). Using natural frequencies to improve diagnostic inferences. Academic Medicine, 73, 538–540. https://doi.org/10.1097/00001888-199805000-00024.
Article
Google Scholar
Keller, N, Feufel, M. A., Kendel, F., Spies, C. D., & Gigerenzer, G. (2017). Training medical students how to extract, assess and communicate evidence from an article. Medical Education, 51, 1162–1163. https://doi.org/10.1111/medu.13444.
Article
Google Scholar
Khan, A., Breslav, S., Glueck, M., & Hornbæk, K. (2015). Benefits of visualization in the mammography problem. International Journal of Human-Computer Studies, 83, 94–113. https://doi.org/10.1016/j.ijhcs.2015.07.001.
Article
Google Scholar
Kirkwood, B., & Sterne, J. (2010). Essential medical statistics. Hoboken: Wiley.
Google Scholar
Kurz-Milcke, E., Gigerenzer, G., & Martignon, L. (2008). Transparency in risk communication: Graphical and analog tools. Annals of the New York Academy of Sciences, 14, 18–28.
Article
Google Scholar
Leuders, T., & Loibl, K. (2020). Processing probability information in nonnumerical settings—Teachers' Bayesian and non-Bayesian strategies during diagnostic judgment. Frontiers in Psychology, 11, 678. https://doi.org/10.3389/fpsyg.2020.00678
Article
Google Scholar
McDowell, M., & Jacobs, P. (2017). Meta-analysis of the effect of natural frequencies on Bayesian reasoning. Psychological Bulletin, 143, 1273–1312. https://doi.org/10.1037/bul0000126.
Article
Google Scholar
Micallef, L., Dragicevic, P., & Fekete, J.-D. (2012). Assessing the effect of visualizations on Bayesian reasoning through crowdsourcing. IEEE Transactions on Visualization and Computer Graphics, 18, 2536–2545. https://doi.org/10.1109/TVCG.2012.199.
Article
Google Scholar
Moons, K. G. Es, G. A., van Deckers, J. W., Habbema, J.D., & Grobbee, D. E. (1997). Limitations of sensitivity, specificity, likelihood ratio, and Bayes' theorem in assessing diagnostic probabilities: Aclinical example. Epidemiology, 8, 12–17. https://doi.org/10.1097/00001648-199701000-00002.
Article
Google Scholar
Osterloh, F. (2012). Ärzten macht ihre Arbeit Spaß [Physicians enjoy their work]. Deutsches Ärzteblatt, 109, 1212–1213.
Google Scholar
Pfannkuch, M., & Budgett, S. (2017). Reasoning from an Eikosogram: An exploratory study. International Journal of Research in Undergraduate Mathematics Education. https://doi.org/10.1007/s40753-016-0043-0.
Article
Google Scholar
Prinz, R., Feufel, M., Gigerenzer, G., & Wegwarth, O. (2015). What counselors tell low-risk clients about HIV test performance. Current HIV Research, 13, 369–380. https://doi.org/10.2174/1570162X13666150511125200.
Article
Google Scholar
Reani, M., Davies, A., Peek, N., & Jay, C. (2018). How do people use information presentation to make decisions in Bayesian reasoning tasks? International Journal of Human–Computer Studies, 111, 62–77. https://doi.org/10.1016/j.ijhcs.2017.11.004.
Article
Google Scholar
Sedlmeier, P., & Gigerenzer, G. (2001). Teaching Bayesian reasoning in less than two hours. Journal of Experimental Psychology: General, 130, 380–400. https://doi.org/10.1037/0096-3445.130.3.380.
Article
Google Scholar
Siegrist, M., & Keller, C. (2011). Natural frequencies and Bayesian reasoning: The impact of formal education and problem context. Journal of Risk Research, 14, 1039–1055. https://doi.org/10.1080/13669877.2011.571786.
Article
Google Scholar
Sirota, M., Kostovičová, L., & Juanchich, M. (2014). The effect of iconicity of visual displays on statistical reasoning: Evidence in favor of the null hypothesis. Psychonomic Bulletin & Review, 21, 961–968. https://doi.org/10.3758/s13423-013-0555-4.
Article
Google Scholar
Spiegelhalter, D., Pearson, M., & Short, I. (2011). Visualizing uncertainty about the future. Science, 333, 1393–1400. https://doi.org/10.1126/science.1191181.
Article
Google Scholar
Steckelberg, A., Balgenorth, A., Berger, J., & Mühlhauser, I. (2004). Explaining computation of predictive values: 2 × 2 table versus frequency tree. A randomized controlled trial [ISRCTN74278823]. BMC Medical Education, 4, 13. https://doi.org/10.1186/1472-6920-4-13.
Article
Google Scholar
Tubau, E., Rodríguez-Ferreiro, J., Barberia, I., Colomé, À. (2019). From reading numbers to seeing ratios: A benefit of icons for risk comprehension. Psychological Research, 83, 1808–1816. https://doi.org/10.1007/s00426-018-1041-4.
Article
Google Scholar
Weber, P., Binder, K., & Krauss, S. (2018). Why can only 24% solve Bayesian reasoning problems in natural frequencies: Frequency phobia in spite of probability blindness. Frontiers in Psychology, 9, 1833. https://doi.org/10.3389/fpsyg.2018.01833.
Article
Google Scholar
Wegwarth, O., & Gigerenzer, G. (2013). Overdiagnosis and overtreatment: Evaluation of what physicians tell their patients about screening harms. JAMA Internal Medicine, 173, 2086–2087. https://doi.org/10.1001/jamainternmed.2013.10363.
Article
Google Scholar
Yamagishi, K. (2003). Facilitating normative judgments of conditional probability: Frequency or nested sets? Experimental Psychology, 50, 97–106. https://doi.org/10.1026//1618-3169.50.2.97.
Article
Google Scholar
Zikmund-Fisher, B. J., Witteman, H. O., Dickson, M., Fuhrel-Forbis, A., Kahn, V. C., Exe, N. L., et al. (2014). Blocks, ovals, or people? Icon type affects risk perceptions and recall of pictographs. Medical Decision Making, 34, 443–453. https://doi.org/10.1177/0272989X13511706.
Article
Google Scholar