Skip to main content
Log in

Local envy-freeness in house allocation problems

  • Published:
Autonomous Agents and Multi-Agent Systems Aims and scope Submit manuscript

Abstract

We study the fair division problem consisting in allocating one item per agent so as to avoid (or minimize) envy, in a setting where only agents connected in a given network may experience envy. In a variant of the problem, agents themselves can be located on the network by the central authority. These problems turn out to be difficult even on very simple graph structures, but we identify several tractable cases. We further provide practical algorithms and experimental insights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The degree of a vertex in a graph should not be confused with the degree of envy which measures how much an agent envies the share of another agent.

  2. This is similar to assuming Borda utilities for the preferences of agents.

References

  1. Abdulkadiroǧlu, A., & Sönmez, T. (1998). Random serial dictatorship and the core from random endowments in house allocation problems. Econometrica, 66(3), 689–701.

    Article  MathSciNet  MATH  Google Scholar 

  2. Abebe, R., Kleinberg, J., & Parkes, D. C. (2017). Fair division via social comparison. In Proceedings of the 16th international conference on autonomous agents and multiagent systems (AAMAS-17) (pp. 281–289). ACM, São Paulo, Brazil.

  3. Amanatidis, G., Birmpas, G., & Markakis, V. (2018). Comparing approximate relaxations of envy-freeness. In Proceedings of the 27th international joint conference on artificial intelligence (IJCAI-18) (pp. 42–48). International Joint Conferences on Artificial Intelligence, Stockholm, Sweden.

  4. Aspvall, B., Plass, M. F., & Tarjan, R. E. (1979). A linear-time algorithm for testing the truth of certain quantified boolean formulas. Information Processing Letters, 8(3), 121–123.

    Article  MathSciNet  MATH  Google Scholar 

  5. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., & Protasi, M. (2012). Complexity and approximation: Combinatorial optimization problems and their approximability properties. Berlin: Springer.

    MATH  Google Scholar 

  6. Aziz, H., Bouveret, S., Caragiannis, I., Giagkousi, I., & Lang, J. (2018). Knowledge, fairness, and social constraints. In Proceedings of the 32nd conference on artificial intelligence (AAAI-18) (pp. 4638–4645). AAAI Press, New Orleans, Louisiana, USA.

  7. Aziz, H., Hougaard, J. L., Moreno-Ternero, J. D., & Østerdal, L. P. (2017). Computational aspects of assigning agents to a line. Mathematical Social Sciences, 90, 93–99.

    Article  MathSciNet  MATH  Google Scholar 

  8. Aziz, H., Schlotter, I., & Walsh, T. (2016). Control of fair division. In Proceedings of the 25th international joint conference on artificial intelligence (IJCAI-16) (pp. 67–73). IJCAI/AAAI Press, New York, NY, USA.

  9. Bade, S. (2019). Matching with single-peaked preferences. Journal of Economic Theory, 180, 81–99.

    Article  MathSciNet  MATH  Google Scholar 

  10. Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.

    Article  MathSciNet  MATH  Google Scholar 

  11. Bei, X., Qiao, Y., & Zhang, S. (2017). Networked fairness in cake cutting. In Proceedings of the 26th international joint conference on artificial intelligence (IJCAI-17) (pp. 3632–3638). International Joint Conferences on Artificial Intelligence, Melbourne, Australia.

  12. Berman, P., Karpinski, M., & Scott, A. D. (2003). Approximation hardness of short symmetric instances of MAX-3SAT. Electronic Colloquium on Computational Complexity (ECCC) (49).

  13. Bilò, V., Caragiannis, I., Flammini, M., Igarashi, A., Monaco, G., Peters, et al. (2019). Almost envy-free allocations with connected bundles. In Proceedings of the 10th conference on innovations in theoretical computer science (ITCS-19), San Diego, California, USA.

  14. Black, D. (1948). On the rationale of group decision-making. Journal of Political Economy, 56(1), 23–34.

    Article  Google Scholar 

  15. Black, D., Newing, R. A., McLean, I., McMillan, A., & Monroe, B. L. (1958). The theory of committees and elections. Berlin: Springer.

    Google Scholar 

  16. Bouveret, S., Cechlárová, K., Elkind, E., Igarashi, A., & Peters, D. (2017). Fair division of a graph. In Proceedings of the 26th international joint conference on artificial intelligence (IJCAI-17) (pp. 135–141). International Joint Conferences on Artificial Intelligence, Melbourne, Australia.

  17. Bouveret, S., Chevaleyre, Y., & Maudet, N. (2016). Fair allocation of indivisible goods. In F. Brandt, V. Conitzer, U. Endriss, J. Lang, & A. D. Procaccia (Eds.), Handbook of computational social choice, Chap. 12 (pp. 284–310). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  18. Bouveret, S., & Lemaître, M. (2016). Characterizing conflicts in fair division of indivisible goods using a scale of criteria. Autonomous Agents and Multi-Agent Systems, 30(2), 259–290.

    Article  Google Scholar 

  19. Bredereck, R., Kaczmarczyk, A., & Niedermeier, R. (2018). Envy-free allocations respecting social networks. In Proceedings of the 17th international conference on autonomous agents and multiagent systems (AAMAS-18) (pp. 283–291). ACM, Stockholm, Sweden.

  20. Burkard, R., Dell’Amico, M., & Martello, S. (2012). Assignment problems. Philadelphia: Society for Industrial and Applied Mathematics.

    Book  MATH  Google Scholar 

  21. Caragiannis, I., Kaklamanis, C., Kanellopoulos, P., & Kyropoulou, M. (2009). On low-envy truthful allocations. In Proceedings of the 1st international conference on algorithmic decision theory (ADT-09) (pp. 111–119). Springer, Venice, Italy.

  22. Cato, S. (2010). Local strict envy-freeness in large economies. Mathematical Social Sciences, 59(3), 319–322.

    Article  MathSciNet  MATH  Google Scholar 

  23. Chevaleyre, Y., Endriss, U., & Maudet, N. (2017). Distributed fair allocation of indivisible goods. Artificial Intelligence, 242, 1–22.

    Article  MathSciNet  MATH  Google Scholar 

  24. Damamme, A., Beynier, A., Chevaleyre, Y., & Maudet, N. (2015). The power of swap deals in distributed resource allocation. In Proceedings of the 14th international conference on autonomous agents and multiagent systems (AAMAS-15) (pp. 625–633). ACM, Istanbul, Turkey.

  25. de Keijzer, B., Bouveret, S., Klos, T., & Zhang, Y. (2009). On the complexity of efficiency and envy-freeness in fair division of indivisible goods with additive preferences. In Proceedings of the 1st international conference on algorithmic decision theory (ADT-09) (pp. 98–110). Springer, Venice, Italy.

  26. Dickerson, J. P., Goldman, J. R., Karp, J., Procaccia, A. D., & Sandholm, T. (2014). The computational rise and fall of fairness. In Proceedings of the 28th conference on artificial intelligence (AAAI-14) (pp. 1405–1411). AAAI Press, Québec City, Québec, Canada.

  27. Feldman, A., & Kirman, A. (1974). Fairness and envy. The American Economic Review, 64(6), 995–1005.

    Google Scholar 

  28. Feldman, M., Lai, K., & Zhang, L. (2009). The proportional-share allocation market for computational resources. IEEE Transactions on Parallel and Distributed Systems, 20(8), 1075–1088.

    Article  Google Scholar 

  29. Fellows, M. R., Hermelin, D., Rosamond, F., & Vialette, S. (2009). On the parameterized complexity of multiple-interval graph problems. Theoretical Computer Science, 410(1), 53–61.

    Article  MathSciNet  MATH  Google Scholar 

  30. Festinger, L. (1954). A theory of social comparison process. Human Relations, 7(2), 117–140.

    Article  Google Scholar 

  31. Flammini, M., Mauro, M., & Tonelli, M. (2018). On social envy-freeness in multi-unit markets. In Proceedings of the 32nd conference on artificial intelligence (AAAI-18) (pp. 1031–1038). AAAI Press, New Orleans, Louisiana, USA.

  32. Foley, D. K. (1967). Resource allocation and the public sector. Yale Economic Essays, 7(1), 45–98.

    Google Scholar 

  33. Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP-completeness. New York, NY: W. H. Freeman.

    MATH  Google Scholar 

  34. Gehrlein, W. V., & Fishburn, P. C. (1976). The probability of the paradox of voting: A computable solution. Journal of Economic Theory, 13(1), 14–25.

    Article  MathSciNet  MATH  Google Scholar 

  35. Gourvès, L., Lesca, J., & Wilczynski, A. (2017). Object allocation via swaps along a social network. In Proceedings of the 26th international joint conference on artificial intelligence (IJCAI-17) (pp. 213–219). International Joint Conferences on Artificial Intelligence, Melbourne, Australia.

  36. Hagberg, A. A., Schult, D. A., & Swart, P. J. (2008). Exploring network structure, dynamics, and function using NetworkX. In Proceedings of the 7th python in science conference (SciPy-08) (pp. 11 – 15). Pasadena, CA USA.

  37. Hylland, A., & Zeckhauser, R. (1979). The efficient allocation of individuals to positions. Journal of Political Economy, 87(2), 293–314.

    Article  MATH  Google Scholar 

  38. Igarashi, A., & Peters, D. (2019). Pareto-optimal allocation of indivisible goods with connectivity constraints. In Proceedings of the 33rd conference on artificial intelligence (AAAI-19), Honolulu, Hawaii, USA (to appear).

  39. Kleinberg, J. M., & Tardos, É. (2006). Algorithm design. Reading: Addison-Wesley.

    Google Scholar 

  40. Kondratev, A. Y., Nesterov, A. S. (2019). Minimal envy and popular matchings. CoRR arXiv:1902.08003.

  41. Lipton, R. J., Markakis, E., Mossel, E., Saberi, A. (2004). On approximately fair allocations of indivisible goods. In Proceedings of the 5th ACM conference on electronic commerce (EC-04) (pp. 125–131). ACM, New York, NY, USA.

  42. Nguyen, T. T., & Rothe, J. (2014). Minimizing envy and maximizing average Nash social welfare in the allocation of indivisible goods. Discrete Applied Mathematics, 179, 54–68.

    Article  MathSciNet  MATH  Google Scholar 

  43. Paschos, V. T. (1992). A ($\Delta $/2)-approximation algorithm for the maximum independent set problem. Information Processing Letters, 44(1), 11–13.

    Article  MathSciNet  MATH  Google Scholar 

  44. Saffidine, A., & Wilczynski, A. (2018). Constrained swap dynamics over a social network in distributed resource reallocation. In Proceedings of the 11th international symposium on algorithmic game theory (SAGT-18) (pp. 213–225). Springer, Beijing, China.

  45. Steger, A., & Wormald, N. C. (1999). Generating random regular graphs quickly. Combinatorics, Probability and Computing, 8(4), 377–396.

    Article  MathSciNet  MATH  Google Scholar 

  46. Suksompong, W. (2019). Fairly allocating contiguous blocks of indivisible items. Discrete Applied Mathematics, 260, 227–236.

    Article  MathSciNet  MATH  Google Scholar 

  47. Svensson, L. G. (1999). Strategy-proof allocation of indivisible goods. Social Choice and Welfare, 16(4), 557–567.

    Article  MathSciNet  MATH  Google Scholar 

  48. Vazirani, V. V. (2001). Approximation algorithms. Berlin: Springer.

    MATH  Google Scholar 

  49. Zhou, L. (1990). On a conjecture by Gale about one-sided matching problems. Journal of Economic Theory, 52(1), 123–135.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the ANR Project 14- CE24-0007-01- CoCoRICo-CoDec. We thank the reviewers of the conference and journal versions for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Maudet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: MIP formulation for \(\textsc {dec{-}location{-}LEF} \)

Appendix: MIP formulation for \(\textsc {dec{-}location{-}LEF} \)

We describe the MIP formulation used to solve the \(\textsc {dec{-}location{-}LEF} \) problem. We are given a set of objects O, a set of agents N equipped with preferences over those objects (for the ease of exposure we refer here to \(r_{i,o}\) as the rank of object o in the preference order of agent i), and a graph \(G = (V,E)\).

Together with the real valued decision variable e, which will be used to express the envy bound we try to minimize, we make use of the following (binary) decision variables:

  • \(x_{i,o} \): agent i holds object o

  • \(l_{i,p}\): agent i is located on node p

  • \(s_{i,j,o} \): agent i sees that agent j holds object o

We first express that each agent must receive exactly one object, and that each object must be assigned to exactly one agent (constraints (1) and (2)). Similarly, each agent must be assigned to a single node of the network, and each node must have a single agent assigned (constraints (3) and (4)).

$$\begin{aligned} \forall i\in N :&\sum \limits _{o\in O}{x_{i,j}}=1 \end{aligned}$$
(1)
$$\begin{aligned} \forall o\in O :&\sum \limits _{i\in N}{x_{i,o}}=1 \end{aligned}$$
(2)
$$\begin{aligned} \forall i\in N :&\sum \limits _{p\in V}{l_{i,p}}=1 \end{aligned}$$
(3)
$$\begin{aligned} \forall p\in V :&\sum \limits _{i\in N}{l_{i,p}}=1 \end{aligned}$$
(4)

When agent i is located on a node p connected to a node q where agent j holds o, i sees that j holds o:

$$\begin{aligned} \forall i, j \in N, \forall \{p, q\} \in E :&l_{i,p} + l_{j,q} + x_{j,o} - 2\le s_{i,j,o} \end{aligned}$$
(5)

Finally, we try to minimize the amount of envy between any pair of agents (MMPE), which is expressed by setting, together with the objective function \(\min e\), constraint (6):

$$\begin{aligned} \forall i, j \in N: \sum _{o \in O} r_{i,o} \times s_{i,j,o} - \sum _{o \in O} r_{i,o} \times x_{i,o} \le e \end{aligned}$$
(6)

Note that in the case of \(\textsc {dec{-}location{-}LEF} \), we are only interested in whether we can find a solution which sets the envy bound e at 0, i.e., whether an LEF allocation exists.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beynier, A., Chevaleyre, Y., Gourvès, L. et al. Local envy-freeness in house allocation problems. Auton Agent Multi-Agent Syst 33, 591–627 (2019). https://doi.org/10.1007/s10458-019-09417-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10458-019-09417-x

Keywords

Navigation