Advertisement

Autonomous Agents and Multi-Agent Systems

, Volume 31, Issue 6, pp 1467–1505 | Cite as

On the hierarchical nature of partial preferences over lotteries

  • Luigi Sauro
Article
  • 152 Downloads

Abstract

In this work we consider preference relations that might not be total. Partial preferences may be helpful to represent those situations where, due to lack of information or vacillating desires, the decision maker would like to maintain different options “alive” and defer the final decision. In particular, we show that, when totality is relaxed, different axiomatizations of classical Decision Theory are no longer equivalent but form a hierarchy where some of them are more restrictive than others. We compare such axiomatizations with respect to theoretical aspects—such as their ability to propagate comparability/incomparability over lotteries and the induced topology—and to different preference elicitation methodologies that are applicable in concrete domains. We also provide a polynomial-time procedure based on the bipartite matching problem to determine whether one lottery is preferred to another.

Keywords

Decision Theory Partial preferences Preference elicitation 

Notes

Acknowledgements

This work has been supported by the Italian PRIN project Security Horizons.

References

  1. 1.
    Anisetti, M., Ardagna, C. A. Bonatti, P. A. Damiani, E., Faella, M., Galdi, C., & Sauro, L. (2014). E-auctions for multi-cloud service provisioning. In Proceedings of the IEEE international conference on services computing, SCC 2014, Anchorage, AK, USA. June 27–July 2, 2014.Google Scholar
  2. 2.
    Arrow, K. J. (1959). Rational Choice Functions and Orderings. Economica, 26(102), 21–27.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Aumann, R. J. (1962). Utility Theory without the completeness axiom. Econometrica, 30(3), 445–462.CrossRefzbMATHGoogle Scholar
  4. 4.
    Aydogan, R. & Yolum, P. (2010). Effective negotiation with partial preference information. In Proceedings of 9th international conference on autonomous agents and multiagent systems (AAMAS10), Toronto, Canada. May 10–14, 2010 (Vol. 1–3, pp. 1605–1606).Google Scholar
  5. 5.
    Aydogan, R., & Yolum, P. (2012). Learning opponent’s preferences for effective negotiation: An approach based on concept learning. Autonomous Agents and Multi-agent Systems, 24(1), 104–140.CrossRefGoogle Scholar
  6. 6.
    Bonatti, P. A., Faella, M., Galdi, C. & Sauro, L. (2011). Towards a mechanism for incentivating privacy. In Proceedings of the 16th European symposium on research in computer security (ESORICS11), Leuven, Belgium. September 12–14, 2011.Google Scholar
  7. 7.
    Bonatti, P. A., Faella, M., Galdi, C. & Sauro, L. (2013). Auctions for partial heterogeneous preferences. In Proceedings of mathematical foundations of computer science 2013—38th international symposium (MFCS 2013), Klosterneuburg, Austria. August 26–30, 2013.Google Scholar
  8. 8.
    Bonatti, P. A., Faella, M., Galdi, C., & Sauro, L. (2016).Generalized Agent-mediated Procurement Auctions. In Proceedings of the international conference on autonomous agents and multi-agent systems (AAMAS16), Singapore. May 09–13, 2016.Google Scholar
  9. 9.
    Boutilier, C., Brafman, R. I., Domshlak, C., & Hoos, H. H. (2004). CP-nets: A tool for representing and reasoning with conditional ceteris paribus preference statements. Journal of Artificial Intelligence Research, 21, 135–191.MathSciNetzbMATHGoogle Scholar
  10. 10.
    Brafman, R. I., Domshlak, C., & Shimony, Solomon E. (2006). On graphical modeling of preference and importance. Journal of Artificial Intelligence Research, 25, 389–424.MathSciNetzbMATHGoogle Scholar
  11. 11.
    Bridges, D. S. & Mehta, G. B. (1995). Representations of preferences orderings (1st edn). Series lecture notes in economics and mathematical systems (Vol. 422). Berlin: Springer.Google Scholar
  12. 12.
    Cornelio, C., Grandi, U., Goldsmith, J., Mattei, N., Rossi, F. & Venable, K. B. (2015). Reasoning with PCP-nets in a multi-agent context. In Proceedings of the 2015 international conference on autonomous agents and multiagent systems (AAMAS15), Istanbul, Turkey (pp. 969–977). May 4–8, 2015.Google Scholar
  13. 13.
    Drummond, J. & Boutilier, C. (2013). Elicitation and approximately stable matching with partial preferences. In Proceedings of the 23rd international joint conference on artificial intelligence (IJCAI13), Beijing, China. August 3–9, 2013.Google Scholar
  14. 14.
    Dubra, J. (2011). Continuity and completeness under risk. Mathematical Social Sciences, 61, 80–81.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Dubra, J., Maccheroni, F., & Ok, Efe A. (2004). Expected utility theory without the completeness axiom. Journal of Economic Theory, 115(1), 118–133.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Eliaz, K., & Ok, E. A. (2006). Indifference or indeciveness? Choice-theoretic foundation ofs of incomplete preferences. Games and Economic Behaviour, 56, 61–86.CrossRefzbMATHGoogle Scholar
  17. 17.
    Evren, O., & Ok, E. A. (2011). On the multi-utility representation of preference relations. Journal of Mathematical Economics, 47, 554–563.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Fishburn, P. C. (1970). Utility theory for decision making. New York: Wiley.CrossRefzbMATHGoogle Scholar
  19. 19.
    Fishburn, P. C. (1976). On linear extention majority graphs on partial orders. Journal of Combinatorial Theory, 21, 65–70.CrossRefzbMATHGoogle Scholar
  20. 20.
    Fishburn, P. C. (1982). The foundations of expected utility (1st edn). In G. Eberlein & W. Leinfellner (Eds.), Theory and decision library (Vol. 31). Dordrecht: Springer.Google Scholar
  21. 21.
    Fishburn, P. C. (1999). Preference structures and their numerical representations. Theoretical Computer Science, 217, 359–383.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Gilboa, I. (2009). Theory of decision under uncertainty. Cambridge: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  23. 23.
    Goldsmith, J., Lang, J., Truszczynski, M., & Wilson, N. (2008). The computational complexity of dominance and consistency in CP-nets. Journal of Artificial Intelligence Research, 33, 403–432.MathSciNetzbMATHGoogle Scholar
  24. 24.
    Kadane, J. B., Schervish, M. J., & Seidenfeld, T. (1999). Rethinking the foundations of statistics. Cambridge: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  25. 25.
    Mandler, M. (2005). Incomplete preferences and rational intransitivity of choice. Games and Economic Behaviour, 50, 255–277.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    McCord, M. R., & Roy, B. (1996). Multicriteria methodology for decision aiding. Berlin: Springer.Google Scholar
  27. 27.
    Myerson, R. B. (1997). Game theory: Analysis of conflict. Cambridge: Harvard University Press.zbMATHGoogle Scholar
  28. 28.
    Nisan, N., Roughgarden, T., Tardos, E., & Vazirani, V. V. (2007). Algorithmic game theory. New York, NY: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  29. 29.
    Ok, E. A. (2002). Utility representation of an incomplete preference relation. Journal of Economic Theory, 104, 429–449.MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Ok, E. A., & Dubra, J. (2002). A model of procedural decision making in the presence of risk. International Economic Review, 43, 1053–1080.MathSciNetCrossRefGoogle Scholar
  31. 31.
    Peleg, B. (1970). A new karzanov-type \(O(n^3)\) max-flow algorithm. Econometrica, 38(1), 93–96.MathSciNetCrossRefGoogle Scholar
  32. 32.
    Pini, M. S., Rossi, F., Venable, K. B. & Walsh, T. (2007). Incompleteness and incomparability in preference aggregation. In Proceedings of 20th international joint conference on artificial intelligence (IJCAI07), Hyderabad, India (pp. 1464–1469). January 6–12.Google Scholar
  33. 33.
    Pini, M. S., Rossi, F., Venable, K. B., & Walsh, T. (2011). Incompleteness and incomparability in preference aggregation: Complexity results. Artificial Intelligence, 175, 1272–1289.MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Reffgen, A. (2011). Generalizing the Gibbard–Satterthwaite theorem: Partial preferences, the degree of manipulation, and multi-valuedness. Social Choice and Welfare, 37(1), 39–59. doi: 10.1007/s00355-010-0479-0.MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Rockafellar, R. T. (1972). Convex analysis. Princeton: Princeton University Press.zbMATHGoogle Scholar
  36. 36.
    Rossi, F., Brent Venable, K., & Walsh, T. (2008). Preferences in constraint satisfaction and optimization. AI Magazine, 29(4), 58–68.CrossRefGoogle Scholar
  37. 37.
    Russell, W., & Hadar, J. (1969). Rules for ordering uncertain prospects. American Economic Review, 59, 25–34.Google Scholar
  38. 38.
    Samuelson, P. A. (1938). A note on the pure theory of consumer’s behaviour. Economica, 5(17), 61–71.CrossRefGoogle Scholar
  39. 39.
    Sauro, L. (2015). On the hierarchical nature of partial preferences. In Proceedings of the 18th international conference on principles and practice of multi-agent systems, PRIMA15, Bertinoro, Italy. October 26–30, 2015.Google Scholar
  40. 40.
    Savage, L. J. (1954). The foundations of statistics. New York: Wiley.zbMATHGoogle Scholar
  41. 41.
    Sen, A., & Majumdar, M. (1976). A note on representing partial orderings. Review of Economic Studies, 43(3), 543–545.CrossRefzbMATHGoogle Scholar
  42. 42.
    Shapley, L. S., & Baucells, M. (1998). Multiperson utility. Note working paper No. 779. Department of Economics, UCLA. Available at http://www.econ.ucla.edu/workingpapers/wp779.pdf.
  43. 43.
    Shapley, L. S., & Baucells, M. (2008). Multiperson utility. Games and Economic Behavior, 62, 329–347.MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Simon, H. (1955). A behavioral model of rational choice. The Quarterly Journal of Economics, 69(1), 99–118. doi: 10.2307/1884852.CrossRefGoogle Scholar
  45. 45.
    Sondermann, D. (1980). Utility representation of partial orders. Journal of Economic Theory, 23, 183–188.MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    van Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior. Princeton: Princeton University Press.zbMATHGoogle Scholar
  47. 47.
    Waissi, G. R. (1992). A new karzanov-type \(O(n^3)\) max-flow algorithm. Journal of Artificial Intelligence Research, 16((2), 65–72.MathSciNetzbMATHGoogle Scholar
  48. 48.
    Walley, P. (1991). Statistical reasoning with imprecise probabilities. London: Chapman and Hall.CrossRefzbMATHGoogle Scholar
  49. 49.
    Wilson, N. (2004). Extending CP-nets with stronger conditional preference statements. In Proceedings of the nineteenth national conference on artificial intelligence (AAAI04), San Jose, California. July 25–29, 2004.Google Scholar
  50. 50.
    Xia, L., & Conitzer, V. (2011). Determining possible and necessary winners under common voting rules given partial orders. Journal of Artificial Intelligence Research, 41, 25–67.MathSciNetzbMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Information TechnologiesUniversità di Napoli “Federico II”NaplesItaly

Personalised recommendations