Modelling collective decision making in groups and crowds: Integrating social contagion and interacting emotions, beliefs and intentions

  • Tibor Bosse
  • Mark Hoogendoorn
  • Michel C. A. Klein
  • Jan TreurEmail author
  • C. Natalie van der Wal
  • Arlette van Wissen
Open Access


Collective decision making involves on the one hand individual mental states such as beliefs, emotions and intentions, and on the other hand interaction with others with possibly different mental states. Achieving a satisfactory common group decision on which all agree requires that such mental states are adapted to each other by social interaction. Recent developments in social neuroscience have revealed neural mechanisms by which such mutual adaptation can be realised. These mechanisms not only enable intentions to converge to an emerging common decision, but at the same time enable to achieve shared underlying individual beliefs and emotions. This paper presents a computational model for such processes. As an application of the model, an agent-based analysis was made of patterns in crowd behaviour, in particular to simulate a real-life incident that took place on May 4, 2010 in Amsterdam. From available video material and witness reports, useful empirical data were extracted. Similar patterns were achieved in simulations, whereby some of the parameters of the model were tuned to the case addressed, and most parameters were assigned default values. The results show the inclusion of contagion of belief, emotion, and intention states of agents results in better reproduction of the incident than non-inclusion.


Computational modelling Collective decision making Social neuroscience Mirroring Belief Emotion Intention Crowd behaviour 



This research has partly been conducted as part of the FP7 ICT Future Enabling Technologies program of the European Commission under grant agreement No. 231288 (SOCIONICAL). Furthermore, we would like to thank Milind Tambe and Jason Tsai from the University of Southern California for the fruitful discussions.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.


  1. 1.
    Bechara A., Damasio A. (2004) The somatic marker hypothesis: A neural theory of economic decision. Games and Economic Behavior 52: 336–372CrossRefGoogle Scholar
  2. 2.
    Bosse, T., Duell, R., Memon, Z. A., Treur, J., & Wal, C. N. V. D. (2009). A multi-agent model for mutual absorption of emotions. In: European council on modeling and simulation, ECMS 2009 (pp. 212–218).Google Scholar
  3. 3.
    Bosse, T., Hoogendoorn, M., Klein, M., Treur, J., & van der Wal, N. (2011). Agent-based analysis of patterns in crowd behaviour involving contagion of mental states. In: IEA/AIE 2011. Heidelberg: Springer.Google Scholar
  4. 4.
    Bosse, T., Memon, Z. A., Treur, J., & Umair, M. (2009). An adaptive human-aware software agent supporting attention-demanding tasks. In: J.-J. Yang, M. Yokoo, T. Ito, Z. Jin, & P. Scerri (Eds.), Proceedings of the 12th international conference on principles of practice in multi-agent systems PRIMA’09, Lecture Notes in AI, vol. 5925 (pp. 292–307). Heidelberg: Springer.Google Scholar
  5. 5.
    Braun, A., Musse, S. R., de Oliveira, L. P. L., & Bodmann, B. E. J. (2003). Modeling individual behaviors in crowd simulation. In: The 16th international conference on computer animation and social agents CASA 2003 (pp.143–147). New Jersey: IEEE Press.Google Scholar
  6. 6.
    Cacioppo J. T., Berntson G. G. (2005) Social neuroscience. Psychology Press, New YorkGoogle Scholar
  7. 7.
    Cacioppo J. T., Visser P. S., Pickett C. L. (2006) Social neuroscience: People thinking about thinking people. MIT Press, CambridgeGoogle Scholar
  8. 8.
    Chen M., Bargh J. A. (1999) Consequences of automatic evaluation: Immediate behavioral predispositions to approach or avoid the stimulus. Personality & Social Psychology Bulletin 25: 215–224CrossRefGoogle Scholar
  9. 9.
    Côté S. (2005) Reconciling the feelings-as-information and hedonic contingency models of how mood influences systematic information processing. Journal of Applied Social Psychology 35: 1656–1679CrossRefGoogle Scholar
  10. 10.
    Damasio A. (1994) Descartes’ error: Emotion, reason and the human brain. Papermac, LondonGoogle Scholar
  11. 11.
    Damasio A. (1996) The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philosophical Transactions of the Royal Society: Biological Sciences 351: 1413–1420CrossRefGoogle Scholar
  12. 12.
    Damasio A. (1999) The feeling of what happens. Body and emotion in the making of consciousness. Harcourt Brace, New YorkGoogle Scholar
  13. 13.
    Damasio A. (2003) Looking for spinoza. Vintage Books, LondonGoogle Scholar
  14. 14.
    Damasio A., Meyer K. (2008) Behind the looking-glass. Nature 454: 167–168CrossRefGoogle Scholar
  15. 15.
    Decety, J., Cacioppo, J. T. (eds) (2010) The handbook of social neuroscience. Oxford University Press, OxfordGoogle Scholar
  16. 16.
    Decety J., Ickes W. (2009) The social neuroscience of empathy. MIT Press, CambridgeGoogle Scholar
  17. 17.
    Dodds P., Watts D. J. (2005) A generalized model of social and biological contagion. Journal of Theoretical Biology 232(4): 587–604MathSciNetCrossRefGoogle Scholar
  18. 18.
    Durupinar, F. (2010). From audiences to mobs: Crowd simulation with psychological factors. PhD Dissertation, Bilkent University, Department of Computer Engineering, Ankara.Google Scholar
  19. 19.
    Ekman, P., Davidson, R. J. (eds) (1994) The nature of emotion: Fundamental questions. Oxford University Press, New YorkGoogle Scholar
  20. 20.
    Ekman P., Friesen W. V. (1975) Unmasking theface. A guide to recognizing emotions from facial clues. Prentice-Hall, Englewood CliffsGoogle Scholar
  21. 21.
    Frederickson B. L., Branigan C. (2001) The role of positive emotions in positive psychology: The broaden-and-build theory of positive emotions. American Psychologist 56: 218–226CrossRefGoogle Scholar
  22. 22.
    Frederickson B. L., Branigan C. (2005) Positive emotions broaden the scope of attention and thought–action repertoires. Cognition and Emotion 19: 313–332CrossRefGoogle Scholar
  23. 23.
    Frijda N. H. (1986) The emotions. Cambridge University Press, CambridgeGoogle Scholar
  24. 24.
    Frijda N. H., Kuipers P., ter Schure E. (1989) Relations among emotion, appraisal, and emotional action readiness. Journal of Personality and Social Psychology 57: 212–228CrossRefGoogle Scholar
  25. 25.
    Guten S., Allen V. L. (1972) Likelihood of escape, likelihood of danger, and panic behavior. Journal of Social Psychology 87: 29–36CrossRefGoogle Scholar
  26. 26.
    Harmon-Jones, E., Winkielman, P. (eds) (2007) Social neuroscience: Integrating biological and psychological explanations of social behavior. Guilford, New YorkGoogle Scholar
  27. 27.
    Helbing D., Farkas I., Vicsek T. (2000) Simulating dynamical features of escape panic. Nature 407(6803): 487–490CrossRefGoogle Scholar
  28. 28.
    Helbing D., Molnar P. (1995) Social force model for pedestrian dynamics. Physical Review E 51: 4282–4286CrossRefGoogle Scholar
  29. 29.
    Hoogendoorn, M., Treur, J., Wal van der, C. N., & van Wissen, A. (2010). An agent-based model for the interplay of information and emotion in social diffusion. In: Proceedings of the 10th IEEE/WIC/ACM international conference on intelligent agent technology, IAT’10 (pp. 439–444). New York: IEEE Computer Society Press.Google Scholar
  30. 30.
    Hoogendoorn, M., Treur, J., Wal van der, C. N., & van Wissen, A. (2010). Modelling the interplay of emotions, beliefs and intentions within collective decision making based on insights from social neuroscience. In: K. K. W. Wong, B. S. U. Mendis & A. Bouzerdoum (Eds.), Proceedings of the 17th international conference on neural information processing, ICONIP’10. Lecture Notes in Artificial Intelligence, vol. 6443 (pp. 196–206). New York: Springer.Google Scholar
  31. 31.
    Hoogendoorn, M., Treur, J., Wal van der, C. N., & van Wissen, A. (2010). Modelling the emergence of group decisions based on mirroring and somatic marking. In: Y. Yao, R. Sun, T. Poggio, J. Liu, N. Zhong, & J. Huang (Eds.), Proceedings of the second international conference on brain informatics, BI’10, LNAI, vol. 6334 (pp. 29–41). Heidelberg: Springer.Google Scholar
  32. 32.
    Iacoboni M. (2005) Understanding others: Imitation, language, empathy. In: Hurley S., Chater N. (eds) Perspectives on imitation: From cognitive neuroscience to social science. MIT Press, Cambridge, pp 77–100Google Scholar
  33. 33.
    Iacoboni M. (2008) Mirroring people. Farrar, Straus & Giroux, New YorkGoogle Scholar
  34. 34.
    Izard C. E. (1994) Innate and universal facial expressions: Evidence from developmental and cross-cultural research. Psychological Bulletin 115: 288–299CrossRefGoogle Scholar
  35. 35.
    Kelly H. H., Condry J. C., Dahlke A., Hill A. H. (1965) Collective behavior in a simulated panic situation. Journal of Experimental Social Psychology 1: 20–54CrossRefGoogle Scholar
  36. 36.
    Musse S. R., Thalmann D. (1997) A model of human crowd behavior: Group inter-relationship and collision detection analysis. Computer Animation and Simulation 97: 39–51CrossRefGoogle Scholar
  37. 37.
    Pan X., Han C., Dauber K., Law K. (2006) Human and social behaviour in computational modeling and analysis of egress. Automation in Construction 15: 448–461CrossRefGoogle Scholar
  38. 38.
    Pelechano, N., O’brien, K., Silverman, B., & Badler, N. (2005). Crowd simulation incorporating agent psychological models, roles and communication. In: First international workshop on crowd simulation, V-CROWDS’05 (pp. 21—30). Lausanne: V-CROWDS.Google Scholar
  39. 39.
    Pineda, J. A. (ed) (2009) Mirror neuron systems: The role of mirroring processes in social cognition. Humana Press, TotowaGoogle Scholar
  40. 40.
    Plutchik R. (1980) Emotion: A psychoevolutionary synthesis. Harper and Row, New YorkGoogle Scholar
  41. 41.
    Quarantelli E. L. (1954) The nature and conditions of panic. American Journal of Sociology 60: 267–275CrossRefGoogle Scholar
  42. 42.
    Rizzolatti G. (2005) The mirror-neuron system and imitation. In: Hurley S., Chater N. (eds) Perspectives on imitation: From cognitive neuroscience to social science. MIT Press, Cambridge, pp 55–76Google Scholar
  43. 43.
    Rizzolatti G., Craighero L. (2004) The mirror-neuron system. Annual Review of Neuroscience 27: 92–169CrossRefGoogle Scholar
  44. 44.
    Rizzolatti G., Fogassi L., Gallese V. (2001) Neuro-physiological mechanisms underlying the understanding and imitation of action. Nature Review of Neuroscience 2: 661–670CrossRefGoogle Scholar
  45. 45.
    Rizzolatti G., Sinigaglia C. (2008) Mirrors in the brain: How our minds share actions and emotions. Oxford University Press, CambridgeGoogle Scholar
  46. 46.
    Rogers E. M. (1962) Diffusion of innovations. The Free Press, New YorkGoogle Scholar
  47. 47.
    Rotteveel M., Phaf R. H. (2004) Automatic affective evaluation does not automatically predispose for arm flexion and extension. Emotion 4: 156–172CrossRefGoogle Scholar
  48. 48.
    Sakuma T., Mukai T., Kuriyama S. (2005) Psychological model for animating crowded pedestrians. Computer Animation and Virtual Worlds 16: 343–351CrossRefGoogle Scholar
  49. 49.
    Schelling T. C. (1973) Hockey helmets, concealed weapons, and daylight saving: a study of binary choices with externalities. Journal of Conflict Resolution 17: 381–428CrossRefGoogle Scholar
  50. 50.
    Sorenson H. W. (1980) Parameter estimation: Principles and problems. Marcel Dekker, New YorkzbMATHGoogle Scholar
  51. 51.
    Striano T., Reid V. (2009) Social cognition: Development, neuroscience, and autism. Wiley-Blackwell, HobokenGoogle Scholar
  52. 52.
    Tsai J., Bowring E., Marsella S., Tambe M. et al (2011) Empirical evaluation of computational emotional contagion models. In: Högni Vilhjálmsson H. (ed) IVA 2011, LNAI 6895. Springer, Berlin, HeidelbergGoogle Scholar
  53. 53.
    Tsai, J., Fridman, N., Bowring, E., Brown, M., Epstein, S., Kaminka, G., Marsella, S., Ogden, A., Rika, I., Sheel, A., Taylor, M.E., Wang, X., Zilka, A., & Tambe, M.: ESCAPES—Evacuation simulation with children, authorities, parents, emotions, and social comparison. In: K., Tumer, P., Yolum, L., Sonenberg, & P., Stone (Eds.), Proceedings of the 10th international conference on autonomous agents and multiagent systems (AAMAS 2011). Valencia: Innovative Applications Track.Google Scholar
  54. 54.
    Ulicny, B., & Thalmann, D. (2001). Crowd Simulation for interactive virtual environments and VR training systems. In: Proceedings of the eurographics workshop on animation and simulation’01 (pp. 163–170). Heidelberg: Springer.Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Tibor Bosse
    • 1
  • Mark Hoogendoorn
    • 1
  • Michel C. A. Klein
    • 1
  • Jan Treur
    • 1
    Email author
  • C. Natalie van der Wal
    • 1
  • Arlette van Wissen
    • 1
  1. 1.Department of Artificial IntelligenceVU UniversityAmsterdamThe Netherlands

Personalised recommendations