Skip to main content
Log in

The adversarial activity model for bounded rational agents

  • Published:
Autonomous Agents and Multi-Agent Systems Aims and scope Submit manuscript

Abstract

Multiagent research provides an extensive literature on formal Beliefs-Desires-Intentions (BDI) based models describing the notion of teamwork and cooperation. However, multiagent environments are often not cooperative nor collaborative; in many cases, agents have conflicting interests, leading to adversarial interactions. This form of interaction has not yet been formally defined in terms of the agents mental states, beliefs, desires and intentions. This paper presents the Adversarial Activity model, a formal Beliefs-Desires-Intentions (BDI) based model for bounded rational agents operating in a zero-sum environment. In complex environments, attempts to use classical utility-based search methods with bounded rational agents can raise a variety of difficulties (e.g. implicitly modeling the opponent as an omniscient utility maximizer, rather than leveraging a more nuanced, explicit opponent model). We define the Adversarial Activity by describing the mental states of an agent situated in such environment. We then present behavioral axioms that are intended to serve as design principles for building such adversarial agents. We illustrate the advantages of using the model as an architectural guideline by building agents for two adversarial environments: the Connect Four game and the Risk strategic board game. In addition, we explore the application of our approach by analyzing log files of completed Connect Four games, and gain additional insights on the axioms’ appropriateness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allis, L. V. (1988). A knowledge-based approach of Connect-Four—the game is solved: White wins. Master’s thesis Free University, Amsterdam, The Netherlands.

  2. Anand R. S., Michael G. P. (1998) Decision procedures for BDI logics. Logic and Computation 8(3): 293–343

    Article  MathSciNet  MATH  Google Scholar 

  3. Bordini, R. H., Dastani, M., Dix, J., Seghrouchni, A. E. F. (eds) (2005) Multi-agent programming: Languages, platforms and applications, volume 15 of Multiagent systems, artificial societies, and simulated organizations. Springer, New York

    Google Scholar 

  4. Bordini R. H., Wooldridge M., Hübner J. F. (2007) Programming multi-agent systems in agentspeak using Jason (Wiley Series in Agent technology). Wiley, New York

    Book  Google Scholar 

  5. Bratman M. E., Israel D. J., Pollack M. E. (1988) Plans and resource-bounded practical reasoning. Computational Intelligence 4(4): 349–355

    Article  Google Scholar 

  6. Bratman M. E. (1987) Intention, plans and practical reason. Harvard University Press, Cambridge

    Google Scholar 

  7. Bratman M. E. (1992) Shared cooperative activity. The Philosophical Review 101(2): 327–341

    Article  Google Scholar 

  8. Braubach, L., Pokahr, A., Lamersdorf, W., Moldt, D. (2004). Goal representation for bdi agent systems. In H. Rafael, M. D. Bordini, J. Dix, A. E. Fallah-Seghrouchni (Eds.), Second international workshop on programming multiagent systems: Languages and tools, pp. 9–20.

  9. Burns B. D., Vollmeyer R. (1998) Modeling the adversary and success in competition. Journal of Personality and Social Psychology 75(3): 711–718

    Article  Google Scholar 

  10. Camerer, C. F. (1997). Progress in behavioral game theory. Journal of Economic Perspectives, 11(4), 167–88 Fall 1997

    Google Scholar 

  11. Carmel D., Markovitch S. (1996) Opponent modeling in multi-agent systems. In: Wei G., Sen S. (eds) Adaptation and learning in multi-agent systems. Springer-Verlag, New York, pp 40–52

    Google Scholar 

  12. Castelfranchi, C. (1996). Commitment: From intentions to groups and organizations. In Proceedings of ICMAS’96. S.Francisco, AAAI-MIT.

  13. Ceri S., Gottlob G., Tanca L. (1990) Logic programming and databases. Springer-Verlag New York, Inc., New York

    Book  Google Scholar 

  14. Cohen P. R., Levesque H. J. (1990) Intention is choice with commitment. Artificial Intelligence 42(2–3): 213–261

    Article  MathSciNet  MATH  Google Scholar 

  15. Dennett D. C. (1971) Intentional systems. Journal of Philosophy 68: 87–106

    Article  Google Scholar 

  16. d’Inverno, M., Luck, M. (1996). Formalising the contract net as a goal-directed system. In MAAMAW ’96: Proceedings of the 7th European workshop on Modelling autonomous agents in a multi-agent world : Agents breaking away, pp. 72–85, Secaucus, NJ: Springer-Verlag New York, Inc.

  17. Dunin-Keplicz B., Verbrugge R. (2002) Collective intentions. Fundamenta Informaticae 51(3): 271–295

    MathSciNet  MATH  Google Scholar 

  18. Fisher, M. (1994). A survey of concurrent metatem—the language and its applications. In ICTL ’94: Proceedings of the First International Conference on Temporal Logic, pp. 480–505, London, UK: Springer-Verlag.

  19. Fudenberg D., Tirole J. (1991) Game theory. The MIT Press, Cambridge, MA

    Google Scholar 

  20. Gabbay Dov M., Hodkinson I., Reynolds M. (1994) Temporal logic (vol. 1): Mathematical foundations and computational aspects. Oxford University Press, Inc., New York

    MATH  Google Scholar 

  21. Georgeff, M. P., Ingrand François, F. (1989). Decision-making in an embedded reasoning system. In IJCAI, pp. 972–978.

  22. Grant, J., Kraus, S., Perlis, D. (2005). Formal approaches to teamwork. In: S. Artemov, H. Barringer, L. Lamb, J. Woods (Eds.) We will show them: Essays in honour of Dov Gabbay, volume 1. 39–68 College Publications (ISBN 1904987117), London.

  23. Grant J., Kraus S., Perlis D. (2005) A logic-based model of intention formation and action for multi-agent subcontracting. Artificial Intelligence 163(2): 163–201

    Article  MathSciNet  MATH  Google Scholar 

  24. Grosz B. J., Kraus S. (1996) Collaborative plans for complex group action. Artificial Intelligence 86(2): 269–357

    Article  MathSciNet  Google Scholar 

  25. Grosz, B. J., Kraus, S. (1999). The evolution of sharedplans. In Foundations and theories of rational agency (pp. 227–262). Kluwer Academic Publishers.

  26. Hadad, M., Kaminka, G., Armon, G., Kraus, S. (2005). Supporting collaborative activity. In Proc. of AAAI-2005, pp. 83–88, Pittsburgh.

  27. Henrich J., Boyd R., Bowles S., Camerer C., Fehr E., Gintis H., McElreath R., Alvard M., Barr A., Ensminger J., Henrich N. S., Hill K., Gil-White F., Gurven M., Marlowe F. W., Patton John Q., Tracer D. (2005) Cross-cultural perspective: Behavioral experiments in 15 small-scale societies. Behavioral and Brain Sciences 28(06): 795–815

    Google Scholar 

  28. Hindriks K. V., De Boer F. S., Van der Hoek W., Meyer J.-J. C. (1999) Agent programming in 3apl. Autonomous Agents and Multi-Agent Systems 2(4): 357–401

    Article  Google Scholar 

  29. Huber, M. J. (1999). Jam: A BDI-theoretic mobile agent architecture. In AGENTS ’99: Proceedings of the third annual conference on Autonomous Agents, pp. 236–243, New York, NY, USA, ACM.

  30. Jennings N. R. (1995) Controlling cooperative problem solving in industrial multi-agent systems using joint intentions. Artificial Intelligence 75(2): 195–240

    Article  Google Scholar 

  31. Johansson, S. J., Olsson, F. (2006). Using multi-agent system technology in risk bots. In AIIDE, pp. 42–47, Marina del rey, California.

  32. Kinny, D., Ljungberg, M., Rao, A. S., Sonenberg, L., Tidhar, G., Werner, E. (1994). Planned team activity. In MAAMAW ’92: Selected papers from the 4th European Workshop on on Modelling Autonomous Agents in a Multi-Agent World, Artificial Social Systems, pp. 227–256, London, UK, Springer-Verlag.

  33. Knuth D. E., Moore R. W. (1975) An analysis of alpha-beta pruning. Artificial Intelligence 6(4): 293–326

    Article  MathSciNet  MATH  Google Scholar 

  34. Kowalski R. A., Sergot M. J. (1986) A logic-based calculus of events. New Generation Computing 4(1): 67–95

    Article  Google Scholar 

  35. Kraus S., Lehmann D. J. (1988) Knowledge, belief and time. Theoretical Computer Science 58: 155–174

    Article  MathSciNet  MATH  Google Scholar 

  36. Lesser V. R., Corkill D. D. (1983) The distributed vehicle monitoring testbed: A tool for investigating distributed problem solving networks. AI Magazine 4(3): 15–33

    Google Scholar 

  37. Levesque H., Reiter R., Lesprance Y., Lin F., Scherl R. (1997) Golog: A logic programming language for dynamic domains. Journal of Logic Programming 31: 59–84

    Article  MathSciNet  MATH  Google Scholar 

  38. Levesque, H. J., Cohen, P. R., Nunes, J. H. T. (1990). On acting together. In Proc. of AAAI-90, pp. 94–99, Boston, MA.

  39. Lokuge, P., Alahakoon, D., Dissanayake, P. (2004). Collaborative neuro-bdi agents in container terminals. International Conference on Advanced Information Networking and Applications, 2:155

  40. Luckhart, C. A., Irani, K. B. (1986). An algorithmic solution of n-person games. In Proc. of AAAI-86, pp. 158–162, Philadelphia, PA.

  41. Manisterski, E., Katz, R., Kraus, S. (2007). Providing a recommended trading agent to a population: A novel approach.In IJCAI, pp. 1408–1414.

  42. Markovitch S., Reger R. (2005) Learning and exploiting relative weaknesses of opponent agents. Autonomous Agents and Multi-Agent Systems 10(2): 103–130

    Article  Google Scholar 

  43. Mccarthy, J., Hayes, P. J. (1969). Some philosophical problems from the standpoint of artificial intelligence. In Machine Intelligence (pp. 463–502). Edinburgh University Press.

  44. Myerson R. B. (1992) On the value of game theory in social science. Rationality and Society 4(1): 62–73

    Article  Google Scholar 

  45. Neves, A., Brasão, O., Rosa A. C. (2002). Learning the risk board game with classifier systems. In SAC, pp. 585–589

  46. Georgeff, M. P., Lansky, A. L. (1987). Reactive reasoning and planning. In AAAI-87 Proceedings, pp. 677–682. American Association of Artificial Intelligence.

  47. Pollack M. (1990) Plans as complex mental attitudes. In: Cohen Philip R., Morgan J., Pollack M. (eds) Intentions in communication. MIT Press, Cambridge, MA, pp 77–103

    Google Scholar 

  48. Rao, A. S. (1996). AgentSpeak(L): BDI agents speak out in a logical computable language.In Rudy van Hoe, editor, Seventh European Workshop on Modelling Autonomous Agents in a Multi-Agent World, Eindhoven, The Netherlands.

  49. Rao, A. S., & Georgeff, M. P. (1991). Modeling rational agents within a BDI-architecture. In J. Allen, R. Fikes, & E. Sandewall (Eds.), Proceedings of the 2nd international conference on principles of knowledge representation and reasoning, pp. 473–484. Morgan Kaufmann publishers Inc.: San Mateo, CA, USA.

  50. Rehak, M., Pechoucek, M., & Tozicka, J. (2005). Adversarial behavior in multi-agent systems. In M. Pechoucek, P. Petta, & L. Z. Varga (Eds.) Multi-agent systems and applications IV: 4th International Central and Eastern European Conference on Multi-Agent Systems, CEEMAS 2005, number 3690 in LNCS, LNAI.

  51. Rosenschein, J. S., & Genesereth, M. R. (1985). Deals among rational agents. In Proceedings of the Ninth International Joint Conference on Artificial Intelligence, pp. 91–99, Los Angeles, California.

  52. Russell S., Norvig P. (2003) Artificial intelligence: A modern approach 2nd edn. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  53. Schaeffer, J., Möller, M., & Björnsson, Y. (Eds.) (2003). Computers and games, third international conference, CG 2002, Edmonton, Canada, July 25–27, 2002, Revised Papers, volume 2883 of Lecture Notes in Computer Science. Springer.

  54. Searle J. R. (1990) Collective intentions and actions. In: Cohen Philip R., Morgan J., Pollack M. (eds) Intentions in communication. MIT Press, Cambridge, MA, pp 401–415

    Google Scholar 

  55. Singh M., P. (1998). The intentions of teams: Team structure, endodeixis, and exodeixis. In ECAI, pp. 303–307.

  56. Stalnaker R. (1999) Extensive and strategic forms: Games and models for games. Research in Economics 53(3): 293–319

    Article  Google Scholar 

  57. Sturtevant, N., Zinkevich, M., & Bowling, M. (2006). Prob-maxn: Playing n-player games with opponent models. In AAAI’06: proceedings of the 21st national conference on Artificial intelligence, pp. 1057–1063. AAAI Press.

  58. Sturtevant, N. R., & Korf, R. E. (2000). On pruning techniques for multi-player games. In AAAI, pp. 201–207. The MIT Press.

  59. Tambe, M. (1997). Agent architectures for flexible, practical teamwork. In National Conference on Artificial Intelligence (AAAI).

  60. Thagard P. (1992) Adversarial problem solving: Modeling an oponent using explanatory coherence. Cognitive Science 16(1): 123–149

    Article  Google Scholar 

  61. Thielscher M. (1999) From situation calculus to fluent calculus: State update axioms as a solution to the inferential frame problem. Artificial Intelligence 111(1–2): 277–299

    Article  MathSciNet  MATH  Google Scholar 

  62. Toseland R. W., Rivas R. F. (1995) An introduction to group work practice (2nd Edn). Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  63. Tuomela, R. (1991). We will do it: An analysis of group-intentions. Philosophy and Phenomological Research, (51), 249–277.

    Google Scholar 

  64. Tuomela, R., & Miller, K. (1988). We-intentions. Philosophical Studies, (53):367–390

  65. van Benthem J. (2001) Games in dynamic-epistemic logic. Bulletin of Economic Research 53(4): 219–248

    Article  MathSciNet  Google Scholar 

  66. van Benthem , J. J. (2005). Open problems in logic and games. In S. N. Artmov, H. Barringer, A. S. d’Avila Garcez, L. C. Lamb, & J. Woods (Eds.), We Will Show Them! (1). (pp. 229–264). College Publications

  67. Willmott S., Richardson J., Bundy A., Levine J. (1999) An adversarial planning approach to Go. Lecture Notes in Computer Science, 1558: 93–112

    Article  Google Scholar 

  68. Wooldridge M. (2000) Reasoning about rational agents. Intelligent robotics and autonomous agents. MIT Press, Cambridge, MA

    Google Scholar 

  69. Wooldridge M., Jennings N. R. (1999) The cooperative problem-solving process. Logic and Computation 9(4): 563–592

    Article  MathSciNet  Google Scholar 

  70. Zuckerman, I., Felner, A., & Kraus, S. (2009). Mixing search strategies for multi-player games. In B. Craig (Ed.), IJCAI pp. 646–652.

  71. Zuckerman, I., Kraus, S., & Rosenschein, J. S. (2008). An empirical investigation of the adversarial activity model. In M. Ghallab, C. D. Spyropoulos, N. Fakotakis, & N. M. Avouris (Eds.) ECAI volume 178 of Frontiers in artificial intelligence and applications (861–862). IOS Press.

  72. Zuckerman, I., Kraus, S., Rosenschein, J. S., & Kaminka, G. A. (2007). An adversarial environment model for bounded rational agents in zero-sum interactions. In AAMAS 2007, pp. 538–546.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inon Zuckerman.

Additional information

A preliminary version of this article appeared in [72] and part of the experimental results were published in [71]. I. Zuckerman—This work was done as part of the first author’s PhD research in Bar-Ilan University, Israel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuckerman, I., Kraus, S. & Rosenschein, J.S. The adversarial activity model for bounded rational agents. Auton Agent Multi-Agent Syst 24, 374–409 (2012). https://doi.org/10.1007/s10458-010-9153-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10458-010-9153-2

Keywords

Navigation