Skip to main content

Advertisement

Log in

Diversity and function of tree species in human-modified Atlantic Forest landscapes

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Agroforestry has been suggested as a sustainable strategy to promote biodiversity conservation in agricultural land, and farmers’ knowledge can be crucial to design more diverse agroforestry systems. Therefore, the main objective of this study was to assess the conservation value of agroforestry systems in relation to forest areas in different stages of natural succession as well as farmers’ knowledge. The conservation value of agroforestry systems (coffee and pastures) was assessed through tree diversity indices and compared with values found in forest areas using rarefaction curve. In parallel, we assessed the tree functions according to farmers’ knowledge using an ethnobotanical survey. Species richness in agroforestry systems was similar to the forest in the early intermediate (40 to 50 years) of succession, whereas the diversity, based on Shannon and Simpson index, was similar to the forest in the pioneer and late pioneer of succession stage (5 to 25 and 5 to 10 years, respectively). According to farmers, the main functions performed by trees in both types of agroforestry system were shade for crops, fauna attraction and firewood. The functions food production and soil cover are restricted to coffee systems, while aesthetics and wooden stake are restricted to pasture systems. Moreover, we found a high correlation between the diversity of functions, based on farmers’ knowledge, and the diversity of species found in the field. Our results suggest that agroforestry systems used by family farmers are important to maintain the diversity of trees at farm and landscape level. In addition, farmer`s knowledge on the functions of tree species is crucial for the design of highly diverse agroforestry systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aide TM, Zimmerman JK, Pascarella JB, Rivera L, Marcano-Vega H (2000) Forest regeneration in a chronosequence of tropical abandoned pastures: implications for restoration ecology. Restor Ecol 8(4):328–338

    Article  Google Scholar 

  • Albertin A, Nair PKR (2004) Farmers’ perspectives on the role of shade trees in coffee production systems: an assessment from the Nicoya Peninsula Costa Rica. Human Ecol 32(4):443–463

    Article  Google Scholar 

  • Albuquerque UP, Lucena RFP (2004) Métodos e técnicas para a coleta de dados. In: Albuquerque UP, Lucena RFP (eds) Métodos e técnicas na pesquisa etnobotânica. Editora Livro Rápido/ Nupeea, Recife, pp 37–62

    Google Scholar 

  • Albuquerque UP, Lucena RFP, Cunha LVF (2008) Métodos e técnicas na pesquisa etnobotânica. Editora Comunigraf/ NUPEEA, Recife

    Google Scholar 

  • Altieri M, and Nicholls CI (2000) Agroecología: teoría y práctica para una agricultura sustentable. Red de Formación Ambiental para América Latina y el Caribe Boulevard de los Virreyes 155, Colonia Lomas de Virreyes 11000, México

  • Anglaaere LC, Cobbina J, Sinclair FL, McDonald MA (2011) The effect of land use systems on tree diversity: farmer preference and species composition of cocoa-based agroecosystems in Ghana. Agrofor Syst 81(3):249–265

    Article  Google Scholar 

  • Bandeira FP, Martorell C, Meave JA, Caballero J (2005) The role of rustic coffee plantations in the conservation of wild tree diversity in the Chinantec region of Mexico. Biodivers Conserv 14(5):1225–1240

    Article  Google Scholar 

  • Bridson D, Forman L (1999) The herbarium: handbook, 3rd edn. Kew, Royal Botanic Gardens, p 346

    Google Scholar 

  • Budka A, Lacka A, Szoszkiewicz K (2019) The use of rarefaction and extrapolation as methods of estimating the effects of river eutrophication on macrophyte diversity. Biodivers Conserv 28(2):385–400

    Article  Google Scholar 

  • Cardoso IM, Guijt I, Franco S, Carvalho AF, Ferreira Neto PS (2001) Continual learning for agroforestry system design: university, NGO and farmer partnership in Minas Gerais, Brazil. Agric Syst 69:235–257

    Article  Google Scholar 

  • Cardoso IM, Boddington C, Janssen BH, Oenema O, Kuyper TW (2003) Distribution of mycorrhizal fungal spores in soils under agroforestry and monocultural coffee systems in Brazil. Agrofor Syst 58(1):33–43

    Article  Google Scholar 

  • Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, Ellison AM (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr 84:45–67

    Article  Google Scholar 

  • Colorado ZGJ, Mehlman D (2018) Effects of floristic and structural features of shade agroforestry plantations on the migratory bird community in Colombia. Agrofor Syst 92(3):677–691

    Article  Google Scholar 

  • Colwell RK, Chao A, Gotelli NJ, Lin SY, Mao CX, Chazdon RL, Longino JT (2012) Models and estimators linking individual-based and sample-based rarefaction, extrapolation, and comparison of assemblages. Journal of Plant Ecology 5(1):3–21

    Article  Google Scholar 

  • Cordeiro AAC, Coelho SD, Ramos NC, Meira-Neto JAA (2018) Agroforestry systems reduce invasive species richness and diversity in the surroundings of protected areas. Agrofor Syst 92(6):1495–1505

    Article  Google Scholar 

  • Dean W (1997) With broadax and firebrand: the destruction of the Brazilian Atlantic Forest. Univ of California Press

    Google Scholar 

  • Fernandes JM, Garcia FCP, Amorozo MCM, Siqueira LC, Marotta COM, Cardoso IM (2014) Etnobotânica de Leguminosae entre agricultores agroecológicos na Floresta Atlântica, Araponga, Minas Gerais, Brasil. Rodriguésia 65:539–554

    Article  Google Scholar 

  • Gomes LC, Bianchi FJJA, Cardoso IM, Fernandes RBA, Fernandes Filho EI, Schulte RPO (2020) Agroforestry systems can mitigate the impacts of climate change on coffee production: a spatially explicit assessment in Brazil. Agr Ecosyst Environ 294:106858

    Article  Google Scholar 

  • Guariguata MR, Ostertag R (2001) Neotropical secondary forest succession: changes in structural and functional characteristics. For Ecol Manag 148:185–206

    Article  Google Scholar 

  • Haggar J, Pons D, Saenz L, Vides M (2019) Contribution of agroforestry systems to sustaining biodiversity in fragmented forest landscapes. Agr Ecosyst Environ 283:106567

    Article  Google Scholar 

  • Hsieh TC, Ma KH, Chao A (2016) iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol 7(12):1451–1456

    Article  Google Scholar 

  • Jost L, González-Oreja J (2012) Midiendo la diversidad biológica: más allá del índice de Shannon. Acta Zoológica Lilloana 56(1–2):3–14

    Google Scholar 

  • Krebs CJ (1989) Ecological methodology. Harper, Row, Publ, New York, p 654

    Google Scholar 

  • Laurance SGW (2004) Landscape connectivity and biological corridors. Agrofor Biodivers Conserv Trop Landsc 1:50–63

    Google Scholar 

  • Lohbeck M, Albers P, Boels LE, Bongers F, Morel S, Sinclair F, Takoutsin B, Vagen TG, Winowiecki LA, Smith-Dumont E (2020) Drivers of farmer-managed natural regeneration in the Sahel. Lessons Restor Sci Rep 10(1):1–11

    Google Scholar 

  • López-Gómez AM, Williams-Linera G, Manson RH (2008) Tree species diversity and vegetation structure in shade coffee farms in Veracruz, Mexico. Agr Ecosyst Environ 124(3–4):160–172

    Article  Google Scholar 

  • Lorenzi H (1992) Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil, 1st edn. Instituto Plantarum, Nova Odessa

    Google Scholar 

  • Lorenzi H (2000) Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil, 2nd edn. Instituto Plantarum, Nova Odessa

    Google Scholar 

  • Lorenzi H (2009) Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil, 3rd edn. Instituto Plantarum, Nova Odessa

    Google Scholar 

  • Martin PA, Newton AC, Bullock JM (2013) Carbon pools recover more quickly than plant biodiversity in tropical secondary forests. Proc R Soc B 280:20132236

    Article  PubMed  PubMed Central  Google Scholar 

  • McDermott ME, Rodewald AD, Matthews SN (2015) Managing tropical agroforestry for conservation of flocking migratory birds. Agrofor Syst 89(3):383–396

    Article  Google Scholar 

  • Mekoya A, Oosting SJ, Fernandez-Rivera S, Van der Zijpp AJ (2008) Multipurpose fodder trees in the Ethiopian highlands: farmers’ preference and relationship of indigenous knowledge of feed value with laboratory indicators. Agric Syst 96(1–3):184–194

    Article  Google Scholar 

  • Mileri M, Passamani M, Eutrópio F, Oliveira A (2012) Removal of seeds of exotic jackfruit trees (Artocarpus heterophyllus, Moraceae) in native forest areas with predominance of jackfruit trees in the Duas Bocas biological reserve. Southeast Brazil Int J Ecosyst 2(5):93–98

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–845

    Article  CAS  PubMed  Google Scholar 

  • Oliveira RR, Engemann C (2011) História da paisagem e paisagens sem história: a presença humana na floresta atlântica do sudeste brasileiro. Esboços Histórias Em Contextos Globais 18(25):9–31

    Google Scholar 

  • Perfecto I, Rice RA, Greenberg R, Van der Voort ME (1996) Shade coffee: a disappearing refuge for biodiversity: shade coffee plantations can contain as much biodiversity as forest habitats. Bioscience 46(8):598–608

    Article  Google Scholar 

  • Perfecto I, Vandermeer J, Wright A (2009) Nature’s matrix: linking agriculture, conservation and food sovereignty. Earthscan, London

    Book  Google Scholar 

  • Pumariño L, Sileshi GW, Gripenberg S, Kaartinen R, Barrios E, Muchane MN, Jonsson M (2015) Effects of agroforestry on pest, disease and weed control: a meta-analysis. Basic Appl Ecol 16(7):573–582

    Article  Google Scholar 

  • R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/.

  • Ramos NC, Gastauer M, de Almeida Campos Cordeiro A, Meira-Neto JAA (2015) Environmental filtering of agroforestry systems reduces the risk of biological invasion. Agrofor Syst 89(2):279–289

    Article  Google Scholar 

  • Real R, Vargas JM (1996) The probabilistic basis of jaccard’s index of similarity. Syst Biol 45(3):380–385

    Article  Google Scholar 

  • Ricketts TH (2004) Tropical Forest fragments enhance pollinator activity in nearby coffee crops. Conserv Biol 18(5):1262–1271

    Article  Google Scholar 

  • Rigal C, Vaast P, Xu J (2018) Using farmers’ local knowledge of tree provision of ecosystem services to strengthen the emergence of coffee-agroforestry landscapes in southwest China. PLoS ONE 13(9):e0204046

    Article  PubMed  PubMed Central  Google Scholar 

  • Rozendaal DM, Bongers F et al (2019) Biodiversity recovery of Neotropical secondary forests. Sci Adv 5(3):eaau3114

    Article  PubMed  PubMed Central  Google Scholar 

  • Safar NVH, Magnago LFS, Schaefer CEGR (2020) Resilience of lowland Atlantic forests in a highly fragmented landscape: insights on the temporal scale of landscape restoration. For Ecol Manage 118183:470–471

    Google Scholar 

  • Salgado BG, Macedo RLG, Alvarenga MIN, Venturin N (2006) Evaluation of soil fertility in agroforest systems with coffee trees (Coffea arabica L.) in Lavras. MG Revista Árvore 30:343–349

    Article  CAS  Google Scholar 

  • Sanchez PA (1995) Science in agroforestry. Agrofor System 30:5–55

    Article  Google Scholar 

  • Santos PZF, Crouzeilles R, Sansevero JBB (2019) Can agroforestry systems enhance biodiversity and ecosystem service provision in agricultural landscapes? A meta-analysis for the Brazilian Atlantic Forest. For Ecol Manage 433:140–145

    Article  Google Scholar 

  • Scarano FR, Ceotto P (2015) Brazilian Atlantic Forest: impact, vulnerability, and adaptation to climate change. Biodivers Conserv 24:2319–2331

    Article  Google Scholar 

  • Silva LLGG, Resende AS, Dias PF, Correia MEF, Scoriza RN (2015) Soil macrofauna in wooded pasture with legume trees. Ciência Rural 45(7):1191–1197

    Article  Google Scholar 

  • Siqueira LC (2008) Levantamento florístico e etnobotânico do estrato arbóreo em sistemas naturais e agroflorestais, Araponga, Minas Gerais. Dissertação, Universidade Federal de Viçosa

  • Soto-Pinto L, Villalvazo-López V, Jimenez-Ferrer G, Ramirez-Marcial N, Montoya G, Sinclair FL (2007) The role of local knowledge in determining shade composition of multistrata coffee systems in Chiapas, Mexico. Biodivers Conserv 16:419–436

    Article  Google Scholar 

  • Souza HN, Cardoso IM, Fernandes JM, Garcia FCP, Bonfim VR, Santos AC, Carvalho AF, Mendonça ES (2010) Selection of native trees for intercropping with coffee in the Atlantic rainforest biome. Agrofor Syst 80(1):1–16

    Article  Google Scholar 

  • Souza HN, de Graaff J, Pulleman MM (2012a) Strategies and economics of farming systems with coffee in the Atlantic Rainforest Biome. Agrofor Syst 84(2):227–242

    Article  Google Scholar 

  • Souza HN, de Goede RG, Brussaard L, Cardoso IM, Duarte EM, Fernandes RB, Pulleman MM (2012b) Protective shade, tree diversity and soil properties in coffee agroforestry systems in the Atlantic Rainforest biome. Agric Ecosyst Environ 146(1):179–196

    Article  Google Scholar 

  • Teixeira HM, Van den Berg L, Cardoso IM, Vermue AJ, Bianchi FJ, Peña-Claros M, Tittonell P (2018a) Understanding farm diversity to promote agroecological transitions. Sustainability 10(12):4337

    Article  Google Scholar 

  • Teixeira HM, Vermue AJ, Cardoso IM, Claros MP, Bianchi FJ (2018b) Farmers show complex and contrasting perceptions on ecosystem services and their management. Ecosyst Serv 33:44–58

    Article  Google Scholar 

  • Teixeira HM, Cardoso IM, Bianchi FJ, Silva AC, Jamme D, Peña-Claros M (2020) Linking vegetation and soil functions during secondary forest succession in the Atlantic Forest. For Ecol Manage 457:117696

    Article  Google Scholar 

  • Teixeira HM, Bianchi FJ, Cardoso IM, Tittonell P, Pena-Claros M (2021) Impact of agroecological management on plant diversity and soil-based ecosystem services in pasture and coffee systems in the Atlantic forest of Brazil. Agr Ecosyst Environ 305:107171

    Article  CAS  Google Scholar 

  • Torralba M, Fagerholm N, Burgess PJ, Moreno G, Plieninger T (2016) Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agr Ecosyst Environ 230:150–161

    Article  Google Scholar 

  • Vaast P, Bertrand B, Perriot JJ, Guyot B, Génard M (2005) Fruit thinning and shade improve bean characteristics and beverage quality of coffee (Coffea arabica L.) under optimal conditions. J Sci Food Agric 86(2):197–204

    Article  Google Scholar 

  • Valencia V, García-Barrios L, West P, Sterling EJ, Naeem S (2014) The role of coffee agroforestry in the conservation of tree diversity and community composition of native forests in a Biosphere Reserve. Agr Ecosyst Environ 189:154–163

    Article  Google Scholar 

  • Valencia V, West P, Sterling EJ, García-Barrios L, Naeem S (2015) The use of farmers’ knowledge in coffee agroforestry management: implications for the conservation of tree biodiversity. Ecosphere 6(7):1–17

    Article  Google Scholar 

  • Vandermeer J, Perfecto I (2007) The agricultural matrix and a future paradigm for conservation. Conserv Biol 21:274–277

    Article  PubMed  Google Scholar 

  • Young A (1997) Agroforestry for soil management. ICRAF and CRAB International, 2nd edn. Wallingford, UK

    Book  Google Scholar 

Download references

Acknowledgements

We would like to thank Fundação de Amparo à Pesquisa do Estado de Minas Gerais, Brasil (FAPEMIG), Conselho Nacional de Desenvolvimento Científico e Tecnológico do Brasil (CNPq). We thank Cassio Moquedace for help with the figures. We thank Tiãozinho and Mauro, from the Seeds laboratory of Federal University of Viçosa with the support and species’ identification. We specially thank the farmers Adriano and Renata Silvestre, who provided shelter and food during fieldwork, and all the Frossard community members, who shared their knowledge and supported access to their farms to develop the research. We also thank the Centro de Tecnologias Alternativas da Zona da Mata, Brazil (CTA-ZM), farmers and farmer organizations in Zona da Mata and the FOREFRONT (an international research program) for supporting our research.

Funding

This work is part of the FOREFRONT program, supported by the Interdisciplinary Research and Education Fund (INREF) of Wageningen University & Research, the Netherlands.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur da Cruz Silva.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 88 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Cruz Silva, A., Teixeira, H.M., Victer, M.C.A. et al. Diversity and function of tree species in human-modified Atlantic Forest landscapes. Agroforest Syst 97, 799–812 (2023). https://doi.org/10.1007/s10457-023-00826-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-023-00826-2

Keywords

Navigation