Skip to main content

Advertisement

Log in

The effect of land use on aboveground biomass and soil quality indicators in spontaneous forests and agroforests of eastern Amazonia

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

This study unites physicochemical indicators of aboveground vegetation, litter layer and topsoil (0–20 cm) in contrasting vegetation types commonly found in the eastern Amazonia. We compare three agroforestry systems (enriched fallows, homegardens and commercial plantations) with three spontaneous forest types (young and old secondary forests and mature rainforests) via one-way ANOVA, linear and non-linear regressions and multivariate analyses. Agroforests had significantly lower understory biomass when compared with young secondary forest. Commercial plantation agroforests had higher topsoil pH and Ca-contents and homegardens had higher K-contents and P-availability hotspots, as revealed by their higher variance and single very high values. Agroforests and spontaneous forests were similar in their litter biomass (both leaves and twigs) and C:N ratio, and in soil organic matter and P contents. The overstory negatively impacted the understory (r 2 = 0.20, p < 0.05) and the understory correlated significantly with the litter layer (r 2 = 0.11, p < 0.07). By contrast, there were no direct relationships between overstory and the litter layer, pointing to a major discontinuity between vegetation and topsoil. Principal component analysis depicted a successional sequence of systems, with homegardens closest to mature rainforests. According to co-inertia analysis, plant biomass was more strongly related to topsoil in spontaneous forests than in agroforests. Altogether, agroforests were similar to mature rainforests in a wide range of variables of the vegetation, litter and topsoil, and co-inertia analysis indicated that agroforestry management can alter this continuum. Our results point to an outstanding position of homegardens in the study region, with higher aboveground biomass and elevated nutrient availability which may have been caused by the traditional sweep-and-burn low-intensity fire regime prevalent throughout Amazonia and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arevalo LA, Alegre JC, Vilcahuaman LJM (2002) Metodologia para estimar o estoque de carbono em diferentes sistemas de uso da terra. Documentos 73. Embrapa Floresta, Colombo, PR

  • Atangana A, Khasa D, Chang S, Degrande A (2014) Major agroforestry systems of the humid tropics. In: Atangana A, Khasa D, Chang S, Degrande A (eds) Tropical agroforestry. Springer, Dordrecht, pp 49–93. doi:10.1007/978-94-007-7723-1_4

    Chapter  Google Scholar 

  • Benjamin TJ, Montañez PI, Jaménez JJM, Gillespie AR (2001) Carbon, water and nutrient flux in Maya homegardens in the Yucatán peninsula of México. Agrofor Syst 53:103–111. doi:10.1023/a:1013312217471

    Article  Google Scholar 

  • Boddey RM, Xavier DF, Alves BJR, Urquiaga S (2003) Brazilian agriculture: the transition to sustainability. J Crop Prod 9:593–621. doi:10.1300/J144v09n01_10

    Article  Google Scholar 

  • Cardozo E, Muchavisoy H, Silva H, Zelarayán M, Leite M, Rousseau G, Gehring C (2015) Species richness increases income in agroforestry systems of eastern Amazonia. Agrofor Syst. doi:10.1007/s10457-015-9823-9

    Google Scholar 

  • Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia 143:1–10. doi:10.1007/s00442-004-1788-8

    Article  PubMed  Google Scholar 

  • Chessel D, Dufour AB, Thioulouse J (2004) The ade4 package-I- one-table methods. R News 4:5–10

    Google Scholar 

  • Constantinides M, Fownes JH (1994) Nitrogen mineralization from leaves and litter of tropical plants: relationship to nitrogen, lignin and soluble polyphenol concentrations. Soil Biol Biochem 26:49–55. doi:10.1016/0038-0717(94)90194-5

    Article  CAS  Google Scholar 

  • Coomes DA, Allen RB, Scott NA, Goulding C, Beets P (2002) Designing systems to monitor carbon stocks in forests and shrublands. For Ecol Manag 164:89–108. doi:10.1016/S0378-1127(01)00592-8

    Article  Google Scholar 

  • Davidson E, de Carvalho C, Figueira A, Ishida F, Ometto J, Nardoto G, Sabá R, Hayashi S, Leal E, Vieira I, Martinelli L (2007) Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature 447:995–998. doi:10.1038/nature05900

    Article  CAS  PubMed  Google Scholar 

  • de las Heras A, Lake IR, Lovett A, Peres C (2011) Future deforestation drivers in an Amazonian ranching frontier. J Land Use Sci 7:365–393. doi:10.1080/1747423x.2011.590234

    Article  Google Scholar 

  • Desjardins T, Barros E, Sarrazin M, Girardin C, Mariotti A (2004) Effects of forest conversion to pasture on soil carbon content and dynamics in Brazilian Amazonia agriculture. Ecosyst Environ 103:365–373. doi:10.1016/j.agee.2003.12.008

    Article  CAS  Google Scholar 

  • Dray S, Chessel D, Thioulouse J (2003) Co-inertia analysis and the linking of ecological data tables. Ecology 84:3078–3089

    Article  Google Scholar 

  • Feller C, Beare MH (1997) Physical control of soil organic matter dynamics in the tropics. Geoderma 79:69–116. doi:10.1016/S0016-7061(97)00039-6

    Article  CAS  Google Scholar 

  • Fromin N, Saby NPA, Lensi R, Brunet D, Porte B, Domenach AM, Roggy JC (2013) Spatial variability of soil microbial functioning in a tropical rainforest of French Guiana using nested sampling. Geoderma 197–198:98–107. http://dx.doi.org/10.1016/j.geoderma.2012.12.009

    Article  CAS  Google Scholar 

  • Gama-Rodrigues AC, Sales MVS, Silva PSD, Comerford NB, Cropper WP, Gama-Rodrigues EF (2014) An exploratory analysis of phosphorus transformations in tropical soils using structural equation modeling. Biogeochemistry 118:453–469. doi:10.1007/s10533-013-9946-x

    Article  CAS  Google Scholar 

  • Gehring C, Park S, Denich M (2008) Close relationship between diameters at 30 cm height and at breast height (dbh). Acta Amazonica 38:71–76

    Article  Google Scholar 

  • He W, Chen F (2013) Evaluating status change of soil potassium from path model. PLoS ONE 8:e76712. doi:10.1371/journal.pone.0076712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hobbie SE, Reich PB, Oleksyn J, Ogdahl M, Zytkowiak R, Hale C, Karolewski P (2006) Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology 87:2288–2297

    Article  PubMed  Google Scholar 

  • IAC (2001) Análise química para avaliação da fertilidade de solos tropicais. Instituto Agronômico, Campinas

    Google Scholar 

  • Kato OR, Lunz AM, Bispo CJC, Carvalho CJRd, Miranda IS, Takamatsu J, Maués MM, Gerhard P, Azevedo Rd, Vasconcelos SS, Honhwald S, Lemos WdP (2009) Projeto dendê: sistemas agroflorestais na agricultura familiar (Oilpalm project: agroforestry systems in smallholder agriculture) Embrapa Eastern Amazonia

  • Keller M, Palace M, Hurtt G (2001) Biomass estimation in the Tapajos national forest, Brazil: examination of sampling and allometric uncertainties. For Ecol Manag 154:371–382. doi:10.1016/S0378-1127(01)00509-6

    Article  Google Scholar 

  • Klute A, Campbell GS, Nielsen DR, Jackson RD, Mortland MN (1986) Methods of soil analysis—physical and mineralogical methods. Soil Science Society of America, Madison

    Google Scholar 

  • Lovell ST, Johnston DM (2009) Designing landscapes for performance based on emerging principles in landscape ecology. Ecol Soc 14:44

    Google Scholar 

  • Markewitz D, Davidson E, Moutinho P, Nepstad D (2004) Nutrient loss and redistribution after forest clearing on a highly weathered soil in Amazonia. Ecol Appl 14:177–199. doi:10.1890/01-6016

    Article  Google Scholar 

  • McGrath D, Smith C, Gholz H, Oliveira F (2001) Effects of Land-use change on soil nutrient dynamics in Amazônian. Ecosystems. doi:10.1007/s10021-001-0033-0

    Google Scholar 

  • Melo VF, Uchôa SCP, Senwo ZN, Amorim RJP (2015) Phosphorus adsorption of some Brazilian soils in relation to selected soil properties. Open J Soil Sci 5:101–109. doi:10.4236/ojss.2015.55010

    Article  CAS  Google Scholar 

  • Moço MKS, Gama-Rodrigues EF, Gama-Rodrigues AC, Machado RCR, Baligar VC (2010) Relationships between invertebrate communities, litter quality and soil attributes under different cacao agroforestry systems in the south of Bahia, Brazil. Appl Soil Ecol 46:347–354. doi:10.1016/j.apsoil.2010.10.006

    Article  Google Scholar 

  • Mohri H, Lahoti S, Saito O, Mahalingam A, Gunatilleke N, Irham Hoang VT, Hitinayake G, Takeuchi K, Herath S (2013) Assessment of ecosystem services in homegarden systems in Indonesia, Sri Lanka, and Vietnam. Ecosyst Serv 5:124–136. doi:10.1016/j.ecoser.2013.07.006

    Article  Google Scholar 

  • Montgomery RA, Chazdon RL (2001) Forest structure, canopy architecture, and light transmittance in tropical wet forests. Ecology 82:2707–2718

    Article  Google Scholar 

  • Muchavisoy HM (2013) Estoque de carbono em florestas, capoeiras e sistemas agroflorestais da Amazônia Oriental. Dissertation, Maranhão State University, Brasil

  • Nair PKR (2014) Grand challenges in agroecology and land use systems. Front Environ Sci. doi:10.3389/fenvs.2014.00001

    Google Scholar 

  • Onoda Y, Saluñga JB, Akutsu K, S-i Aiba, Yahara T, Anten NPR (2014) Trade-off between light interception efficiency and light use efficiency: implications for species coexistence in one-sided light competition. J Ecol 102:167–175. doi:10.1111/1365-2745.12184

    Article  Google Scholar 

  • Pinho RC, Alfaia SSA, Miller RP, Uguen K, Magalhães LD, Ayres M, Freitas V, Trancose R (2011) Islands of fertility: soil improvement under indigenous homegardens in the savannas of Roraima, Brazil. Agrofor Syst. doi:10.1007/s10457-010-9336-5

    Google Scholar 

  • Pinho RC, Miller RP, Alfaia SS (2012) Agroforestry and the improvement of soil fertility: a view from Amazonia. Appl Environ Soil Sci. doi:10.1155/2012/616383

    Google Scholar 

  • Punchi-Manage R, Wiegand T, Wiegand K, Getzin S, Gunatilleke CVS, Gunatilleke AAU (2014) Effect of spatial processes and topography on structuring species assemblages in a Sri Lankan dipterocarp forest. Ecology 95:376–386

    Article  PubMed  Google Scholar 

  • R Development Core Team (2007) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rahman MM, Tsukamoto J, Rahman MM, Yoneyama A, Mostafa KM (2013) Lignin and its effects on litter decomposition in forest ecosystems. Chem Ecol 29:540–553. doi:10.1080/02757540.2013.790380

    Article  CAS  Google Scholar 

  • Rhoades C (1996) Single-tree influences on soil properties in agroforestry: lessons from natural forest and savanna ecosystems. Agrofor Syst 35:71–94. doi:10.1007/bf02345330

    Article  Google Scholar 

  • Rugalema GH, Okting’ati A, Johnsen FH (1994) The homegarden agroforestry system of Bukoba district, North-Western Tanzania. 1. Farming system analysis. Agrofor Syst 26:53–64. doi:10.1007/BF00705152

    Article  Google Scholar 

  • Satyam Verma SJ (2012) Impact of forest fire on physical, chemical and biological properties of soil: a review. Proc Int Acad Ecol Environ Sci 2:168–176

    Google Scholar 

  • Schwinning S, Weiner J (1998) Mechanisms determining the degree of size asymmetry in competition among plants. Oecologia 113:447–455. doi:10.1007/s004420050397

    Article  Google Scholar 

  • Seneviratne G, Kuruppuarachchi KACN, Somaratne S, Seneviratne KACN (2006) Nutrient cycling and cafety-net mechanism in the tropical homegardens. Int J Agric Res 1:169–182. doi:10.3923/ijar.2006.169.182

    Article  Google Scholar 

  • Silver WL, Ostertag R, Lugo AE (2000) The potential for carbon sequestration through reforestation of abandoned tropical agricultural and pasture lands. Restor Ecol 8:394–407. doi:10.1046/j.1526-100x.2000.80054.x

    Article  Google Scholar 

  • Somarriba E, Cerda R, Orozco L, Cifuentes M, Dávila H, Espin T, Mavisoy H, Ávila G, Alvarado E, Poveda V, Astorga C, Say E, Deheuvels O (2013) Carbon stocks and cocoa yields in agroforestry systems of Central America. Agric Ecosyst Environ 173:46–57. doi:10.1016/j.agee.2013.04.013

    Article  Google Scholar 

  • Souza H, Graaff J, Pulleman M (2012) Strategies and economics of farming systems with coffee in the Atlantic Rainforest biome. Agrofor Syst 84:227–242. doi:10.1007/s10457-011-9452-x

    Article  Google Scholar 

  • Tedesco MJ, Gianello C, Bissani CA, Bohnen H, Volkweiss SJ (1995) Análise de Solo, Plantas e Outros Materiais, 2ª edn. UFRGS, Porto Alegre

    Google Scholar 

  • Thiele-Bruhn S, Bloem J, de Vries FT, Kalbitz K, Wagg C (2012) Linking soil biodiversity and agricultural soil management. Curr Opin Environ Sustain 4:523–528. doi:10.1016/j.cosust.2012.06.004

    Article  Google Scholar 

  • Tittonell P, Muriuki A, Klapwijk CJ, Shepherd KD, Coe R, Vanlauwe B (2013) Soil heterogeneity and soil fertility gradients in smallholder farms of the East African highlands. Soil Sci Soc Am J 77:525–538. doi:10.2136/sssaj2012.0250

    Article  CAS  Google Scholar 

  • Tu L-H, Hu H-L, Hu T-X, Zhang J, Liu L, Li R-H, Dai H-Z, Luo S-H (2011) Decomposition of different litter fractions in a subtropical bamboo ecosystem as affected by experimental nitrogen deposition. Pedosphere 21:685–695. doi:10.1016/S1002-0160(11)60171-9

    Article  CAS  Google Scholar 

  • Usda SSS (2010) Keys to soil taxonomy, 11th edn. Department of Agriculture Natural Resources Conservation, Washington, DC

    Google Scholar 

  • van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB, Fukami T, Kardol P, Klironomos JN, Kulmatiski A, Schweitzer JA, Suding KN, Van de Voorde TFJ, Wardle DA (2013) Plant–soil feedbacks: the past, the present and future challenges. J Ecol 101:265–276. doi:10.1111/1365-2745.12054

    Article  Google Scholar 

  • Van Wagner CE (1968) The line intersect method in forest fuel sampling. For Sci 14:20–26

    Google Scholar 

  • Varma A (2003) The economics of slash and burn: a case study of the 1997–1998 Indonesian forest fires. Ecol Econ 46:159–171. doi:10.1016/S0921-8009(03)00139-3

    Article  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff Method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    Article  CAS  Google Scholar 

  • Wang H, Liu S-R, Mo J-M, Wang J-X, Makeschin F, Wolff M (2010) Soil organic carbon stock and chemical composition in four plantations of indigenous tree species in subtropical China. Ecol Res 25:1071–1079. doi:10.1007/s11284-010-0730-2

    Article  CAS  Google Scholar 

  • Winklerprins A (2009) Sweep and char and the creation of Amazonian dark earths in homegardens. In: Woods W, Teixeira W, Lehmann J, Steiner C, WinklerPrins A, Rebellato L (eds) Amazonian dark earths: Wim Sombroek’s vision. Springer, Dordrecht, pp 205–211. doi:10.1007/978-1-4020-9031-8_10

    Chapter  Google Scholar 

  • Zhang K, Cheng X, Dang H, Ye C, Zhang Y, Zhang Q (2013) Linking litter production, quality and decomposition to vegetation succession following agricultural abandonment. Soil Biol Biochem 57:803–813. doi:10.1016/j.soilbio.2012.08.005

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research was financed by the Research Fund of Maranhão State (FAPEMA) and by the Brazilian Council of Higher Education (CAPES). We thank INCRA (Federal Colonization and Land Reform Agency), Embrapa Eastern-Amazonia, MST (Movement of the Landless) and the Mixed Agricultural Cooperative of Tomé-açu (CAMTA) for their invaluable practical and infrastructure support We also thank Waldeir Brito for his aid with multivariate vector graphics, and Noriko Cassman for English language editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Gehring.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 59 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leite, M.F.A., Luz, R.L., Muchavisoy, K.H.M. et al. The effect of land use on aboveground biomass and soil quality indicators in spontaneous forests and agroforests of eastern Amazonia. Agroforest Syst 90, 1009–1023 (2016). https://doi.org/10.1007/s10457-015-9880-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-015-9880-0

Keywords

Navigation