Skip to main content

Advertisement

Log in

Forestry insularity effect of four Mimosa L. species (Leguminosae-Mimosoideae) on soil nutrients of a Mexican semiarid ecosystem

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Information about forestry insularity of plants on soil nutrients will be critical for selecting plant species for agrosilvopastoral or fertility reclamation programs in dry ecosystems. We explored the effects of four Mimosa species (M. lacerata, M. luisana, M. polyantha and M. texana var. filipes) and of rainfall seasonal variation on soil nutrients in a semiarid ecosystem located at the Tehuacán-Cuicatlán Valley, Mexico. Soil samples were taken from outside and under the canopy at three positions (trunk, middle, edge) in all four Mimosa species; ten plants per species. The soil pH, organic matter (SOM), organic carbon (SOC), total nitrogen (Nt), available phosphorus (Pi), and major cations (Ca, Mg, K and Na) were determined. Our results showed that Mimosa species improve the soil under their canopies creating fertile islands with higher SOM, SOC, total N and Pi cycling than the soil in open areas (OA). The insularity effect was significantly species-dependent, where SOM, SOC, Nt and Pi decreased consistently from trunk to OA in all four Mimosa species; however, magnitude varied among species. Likewise, differences in the quantity of soil cations were observed among Mimosa species; though, an insularity gradient trunk-open area was not observed. All these effects were consistent across the species studied and showed little seasonal variability, suggesting a strong forestry insularity of Mimosa species on soil fertility. Of all the four Mimosa species studied, M. lacerata was the most effective in accumulating SOM and nutrients in the soil, for which it would be a good option to implement in agrosilvopastoral or fertility reclamation programs in this semiarid ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Austin A, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Schaeffer SM (2004) Water pulses and biogeochemical cycles in arid and semi-arid ecosystems. Oecologia 141:221–235

    Article  PubMed  Google Scholar 

  • Belsky JA, Amundson RG, Duxbury JM, Riha SJ, Ali AR, Mwonga SM (1989) The effects of trees on their physical, chemical, and biological environments in a semiarid savana in Kenya. J App Ecol 26:1005–1024

    Article  Google Scholar 

  • Bremmer JM, Mulvaney CS (1982) Total nitrogen. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Part 2, 2nd edn. American Society of Agronomy, Madison, pp 595–624

    Google Scholar 

  • Budowski G (1993) The scope and potential of agroforestry in Central America. Agrofor Syst 23:121–131

    Article  Google Scholar 

  • Butterfield BJ, Briggs JM (2009) Patch dynamics of soil biotic feedbacks in the Sonoran Desert. J Arid Environ 73:96–102

    Article  Google Scholar 

  • Camargo-Ricalde SL, Dhillion SS (2003) Endemic Mimosa species can serve as mycorrhizal “resource islands” within semiarid communities of the Tehuacán-Cuicatlán Valley, México. Mycorrhiza 13:129–136

    Article  PubMed  Google Scholar 

  • Camargo-Ricalde SL, Dhillion SS, Grether R (2002) Community structure of endemic Mimosa species and environmental heterogeneity in a semi-arid Mexican Valley. J Veg Sci 13:697–704

    Article  Google Scholar 

  • Camargo-Ricalde SL, Dhillion SS, Jiménez-González C (2003) Mycorrhizal perennials of the “matorral xerófilo” and the “selva baja caducifolia” communities in the semiarid Tehuacán-Cuicatlán Valley, Mexico. Mycorrhiza 13:77–83

    Article  PubMed  Google Scholar 

  • Camargo-Ricalde SL, Montaño NM, Reyes-Jaramillo I, Jiménez-González C, Dhillion S (2010) Effect of mycorrhizae on seedlings of six endemic Mimosa L. species (Leguminosae-Mimosoideae) from the semi-arid Tehuacán-Cuicatlán Valley, Mexico. Tress Struct Funct 24:67–78

    CAS  Google Scholar 

  • Casas A, Valiente-Banuet A, Viveros JL, Caballero J, Cortés L, Dávila P, Lira R, Rodríguez L (2001) Plant resources of the Tehuacan-Cuicatlán Valley, Mexico. Econ Bot 55:129–166

    Article  Google Scholar 

  • Chen J, Stark JM (2000) Plant species effects and carbon and nitrogen cycling in a sagebrush-crested wheatgrass soil. Soil Biol Biochem 32:47–57

    Article  CAS  Google Scholar 

  • Cony MA (1995) Reforestación racional de zonas áridas y semiáridas con árboles de múltiples propósitos. Interciencia 20:249–253

    Google Scholar 

  • Cortina J, Maestre FT (2005) Plant effects on soils in drylands: implications on community dynamics and ecosystem restoration. In: Binkley D, Menyailo O (eds) Tree species effects in soils: implications for global climate change. NATO science series. Kluwer Academic Publishers, Dordrecht, pp 85–118

    Chapter  Google Scholar 

  • Davies KW, Bates JD, Miller RF (2007) The influence of Artemisia tridentate ssp. wyomingensis on micrositie and herbaceous vegetation heterogeneity. J Arid Environ 69:441–457

    Article  Google Scholar 

  • Dávila P, Arizmendi MC, Valiente-Banuet A, Villaseñor JL, Casas A, Lira R (2002) Biological diversity in the Tehuacán-Cuicatlán Valley, México. Biol Conserv 11:421–442

    Google Scholar 

  • Dhillion SS, Camargo-Ricalde SL (2005) The cultural and ecological roles of Mimosa species in the Tehuacán-Cuicatlán Valley, Mexico. Econ Bot 59:390–394

    Article  Google Scholar 

  • Finzi AC, Canham CD, Breemen NV (1998) Canopy tree-soil interactions within temperate forest: species effects on pH and cations. Ecol Appl 8:447–454

    Google Scholar 

  • Flores E, Frias J, Jurado P, Olalde V, Figueroa JD, Valdivia A, García-Moya E (2007) Effect of catclaw Mimosa on soil fertility and forage yield in rangelands in central Mexico. Terra Lat 25:311–319

    Google Scholar 

  • Fontaine S, Mariotti A, Abbadiel L (2003) The priming effect of organic matter: a question of microbial competition. Soil Biol Biochem 35:837–843

    Article  CAS  Google Scholar 

  • Frias-Hernandez JT, Aguilar AL, Olalde-Portugal V, Balderas-López JA, Gutierrez-Juárez G, Alvarado-Gil JJ, Castro JJ, Vargas H, Albores A, Dendooven L (1999) Soil characteristics in semiarid highlands of central Mexico as affected by Mesquite trees (Prosopis laevigata). Arid Soil Res Rehabil 13:305–312

    Article  Google Scholar 

  • García-Moya E, Mckell CM (1970) Contribution of shrubs to the nitrogen economy of a desert-wash plant community. Ecology 51:81–88

    Article  Google Scholar 

  • García-Oliva F (1991) Influencia de la dinámica del paisaje en la distribución de las comunidades vegetales en la Cuenca del Río Zapotitlán. Puebla. Bol Invest Geog 23:53–70

    Google Scholar 

  • Garner W, Steinberger Y (1989) A proposed mechanism for the formation of fertile island in the desert ecosystem. J Arid Environ 16:257–262

    Google Scholar 

  • González-Ruiz T, Rodríguez-Zaragoza S, Ferrera-Cerrato R (2008) Fertility islands around Prosopis laevigata and Pachycereus hollianus in the drylands of Zapotitlán Salinas, Mexico. J Arid Environ 72:1202–1212

    Article  Google Scholar 

  • Grether R, Camargo-Ricalde SL, Martínez-Bernal A (1996) Especies del género Mimosa (Leguminosae) presentes en México. Bol Soc Bot México 58:149–152

    Google Scholar 

  • Herman RP, Provencio K, Herrera-Matos J, Torrez R (1995) Resource islands predicts the distribution of heterotrophic bacteria in Chihuahuan sedert soils. Appl Environ Microbiol 61:1816–1821

    PubMed  CAS  Google Scholar 

  • Herrera-Arreola G, Herrera Y, Reyes-Reyes BG, Dendooven L (2007) Mesquite (Prososis juliflora (Sw.) DC.), huisache (Acacia farnesiana (L.) Willd) and catclaw (Mimosa biuncifera Benth.) and their effect on dynamics of carbon and nitrogen in soils of the semi-arid highlands of Durango Mexico. J Arid Environ 69:583–598

    Article  Google Scholar 

  • Hook PB, Burke IC, Lauenroth WK (1991) Heterogeneity of soil and plant N and C associated with individual plants and openings in North American shortgrass steppe. Plant Soil 138:247–256

    Article  CAS  Google Scholar 

  • Jackson ML (1976) Análisis Químico de Suelos. 3ª. Edición. Ediciones Omega, Barcelona

    Google Scholar 

  • Kass DCL, Foletti C, Szott LT, Landaverde R, Nolasco R (1993) Traditional fallow systems of the Americas. Agrofor Syst 23:207–218

    Article  Google Scholar 

  • Kulmatiski A, Beard KH, Steves JR, Cobbold SM (2008) Plant-soil feedbacks: a meta-analytical review. Ecol Lett 11:980–992

    Article  PubMed  Google Scholar 

  • Luna-Suárez S, Luna-Guido ML, Frias-Hernández J, Olalde-Portugal V (1998) Soil processes as affected by replacement of natural mesquite ecosystem with maize crop. Biol Fertil Soils 27:274–278

    Article  Google Scholar 

  • Luna-Suárez S, Frías-Hernández JT, Olalde-Portugal V, Dendooven L (2000) Catclaw (Mimosa biuncifera): a pest or a means to restore soil fertility in heavily eroded soil from the central highlands of Mexico? Biol Fertil Soils 32:109–113

    Article  Google Scholar 

  • Martínez-Bernal A, Grether R (2006) Mimosa. In: Novelo A, Medina-Lemos R (eds) Flora del Valle de Tehuacán-Cuicatlán. Fascículo 44 Mimosaceae Tribu Mimoseae. Instituto de Biología, Universidad Nacional Autónoma de México, México, pp 42–99

    Google Scholar 

  • Menezes RSC, Salcedo LH, Elliot ET (2002) Microclimate and nutrient dynamics in a silvopastoral system of semiarid northeastern Brazil. Agrofor Syst 56:27–38

    Article  Google Scholar 

  • Montaño NM, García-Sánchez R, Ochoa de la Rosa G, Monroy A (2006) Relationship between shrub vegetation, mesquite and soil of a semiarid ecosystem in Mexico. Terra Lat 24:193–205

    Google Scholar 

  • Montaño NM, García-Oliva F, Jaramillo VJ (2007) Dissolved organic carbon affects soil microbial activity and nitrogen dynamics in a Mexican tropical deciduous forest. Plant Soil 295:265–277

    Article  CAS  Google Scholar 

  • Myers N, Mitterneier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  PubMed  CAS  Google Scholar 

  • Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2, 2nd edn. American Society of Agronomy, Madison, pp 535–577

    Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circ 939. US Government Printing Office, Washington DC

    Google Scholar 

  • Pandey CB, Singh AK, Sharma DK (2000) Soil properties under Acacia nilotica trees in a traditional agroforestry system in central India. Agrofor Syst 49:53–61

    Article  Google Scholar 

  • Pavón NP, Briones O (2000) Root distribution, standing crop biomass and belowground productivity in a semidesert in Mexico. Plant Ecol 146:131–136

    Article  Google Scholar 

  • Pavón NP, Briones O, Flores-Rivas J (2005) Litterfall production and nitrogen content in an intertropical semi-arid Mexican scrub. J Arid Environ 60:1–13

    Article  Google Scholar 

  • Perroni-Ventura Y, Montaña C, García-Oliva F (2006) Relationship between soil nutrient availability and plant species richness in a tropical semi-arid environment. J Veg Sci 17:719–728

    Article  Google Scholar 

  • Reyes-Reyes G, Baron-Ocampo L, Cuali-Alvarez I, Fías-Hernández JT, Olalde-Portugal V, Varela L, Dendooven L (2002) C and N dynamics in soil from the central higlands of México as affected by mesquite (Prosopis spp.) and huizache (Acacia tortuosa): a laboratory investigation. Appl Soil Ecol 19:27–34

    Article  Google Scholar 

  • Reynolds JF, Virginia RA, Kemp PR, de Soyza AG, Tremmel DC (1999) Impact of drought on desert shrubs effects of seasonality and degree of resource island development. Ecol Monogr 69:69–106

    Article  Google Scholar 

  • Rodríguez-Zaragoza S, González-Ruiz T, González-Lozano E, Lozada-Rojas A, Mayzlish-Gati E, Steinberger Y (2008) Vertical distribution of microbial communities under the canopy of two legume bushes in the Tehuacán Desert, Mexico. Eur J Soil Biol 44:373–380

    Article  Google Scholar 

  • Rzedowski J (1978) Vegetación de México. Limusa, México

    Google Scholar 

  • Saetre P, Stark JM (2005) Microbial dynamics and carbon and nitrogen cycling following re-wetting of soils beneath two semi-arid plant species. Oecologia 142:247–260

    Article  PubMed  Google Scholar 

  • Schade JD, Hobbie SE (2005) Spatial and temporal variation in islands of fertility in the Sonoran Desert. Biogeochemistry 73:541–553

    Article  Google Scholar 

  • Schelesinger WH (1997) Biogeochemistry: an analysis of global change. Academic Press, New York

    Google Scholar 

  • Sokal R, Rohlf F (1995) Biometry. Freeman and Company, San Francisco

    Google Scholar 

  • Sprent JI, James EK (2007) Legume evolution: where do nodules and mycorrhizas fit in? Plant Phys 144:575–581

    Article  CAS  Google Scholar 

  • Statsoft INC (2000) Statistica for Windows vers. 6. Statsoft, Inc., Tulsa

    Google Scholar 

  • Thomson LAJ, Turnbull JW, Maslin BR (1994) The utilization of Australian species of Acacia, with particular reference to those of the subtropical dry zone. J Arid Environ 27:279–295

    Article  Google Scholar 

  • Tiedemann AR, Klemmedson JO (1973) Effect of mesquite on physical and chemical properties of the soil. J Rang Manag 26:27–29

    Article  CAS  Google Scholar 

  • Valiente-Banuet L (1991) Patrones de precipitación en el Valle semiárido de Tehuacán, Puebla, México. B.Sc. Thesis, Facultad de Ciencias, UNAM, México, 61 pp

  • Valiente-Banuet A, Ezcurra E (1991) Shade as a cause of the association between the cactus Neobuxbaumia tetetzo and the nurse plant Mimosa luisana in the Tehuacán Valley, Mexico. J Ecol 79:961–971

    Article  Google Scholar 

  • Van Reeuwij LP (ed) (1999) Procedimientos para Análisis de Suelos, versión 1995. Traduction: Gutiérrez Castorena MC, Tavares Espinosa CA, Ortiz-Solorio CA. 1ª ed in spanish. Especialidad de Edafología, Colegio de Postgraduados, Montecillo, México

    Google Scholar 

  • Villaseñor JL, Dávila P, Chiang F (1990) Fitogeografía del Valle de Tehuacán-Cuicatlán. Bol Soc Bot México 50:135–149

    Google Scholar 

  • Virginia RA, Jarrell WM (1983) Soil properties in a mesquite-dominated Sonoran Desert ecosystem. Soil Sci Soc Am J 47:138–144

    Article  CAS  Google Scholar 

  • von Ende CN (1993) Repeated measures analysis: growth and other time-dependent measures. In: Sheiner SM, Gurevitch J (eds) Design and analysis of ecological experiments. Chapman and Hall, New York, pp 113–137

    Google Scholar 

  • Walkley A, Black IA (1934) An examination of the degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    Article  CAS  Google Scholar 

  • Whitford WG (2002) Ecology of desert system. Academic Press, San Diego

    Google Scholar 

  • Xie G, Steinberger Y (2001) Temporal patterns of C and N under shrub canopy in a loessial soil desert ecosystem. Soil Biol Biochem 33:1371–1379

    Article  CAS  Google Scholar 

  • Zavala-Hurtado JA, Hernández-Cárdenas G (1998) Characterization and diagnosis study of the area proposed as Tehuacán-Cuicatlán Biosphere Reserve. Universidad Autónoma Metropolitna-Instituto Nacional de Ecología (SEMARNAP), México (in Spanish)

    Google Scholar 

Download references

Acknowledgements

We thank Paulina Martínez Allende, Diana A. Navarrete Romo, and Mayerlin Tenango Cabañas for their assistance during the field work. N. M. Montaño acknowledges Universidad Autónoma Metropolitana-Iztapalapa (UAM-I), Mexico, for a Postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Lucía Camargo-Ricalde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camargo-Ricalde, S.L., Reyes-Jaramillo, I. & Montaño, N.M. Forestry insularity effect of four Mimosa L. species (Leguminosae-Mimosoideae) on soil nutrients of a Mexican semiarid ecosystem. Agroforest Syst 80, 385–397 (2010). https://doi.org/10.1007/s10457-010-9330-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-010-9330-y

Keywords

Navigation