Skip to main content

Advertisement

Log in

New insights into the role of mitochondria in cardiac microvascular ischemia/reperfusion injury

  • Review Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

As reperfusion therapies have become more widely used in acute myocardial infarction patients, ischemia-induced myocardial damage has been markedly reduced, but reperfusion-induced cardiac injury has become increasingly evident. The features of cardiac ischemia–reperfusion (I/R) injury include microvascular perfusion defects, platelet activation and sequential cardiomyocyte death due to additional ischemic events at the reperfusion stage. Microvascular obstruction, defined as a no-reflow phenomenon, determines the infarct zone, myocardial function and peri-operative mortality. Cardiac microvascular endothelial cell injury may occur much earlier and with much greater severity than cardiomyocyte injury. Endothelial cells contain fewer mitochondria than other cardiac cells, and several of the pathological alterations during cardiac microvascular I/R injury involve mitochondria, such as increased mitochondrial reactive oxygen species (mROS) levels and disturbed mitochondrial dynamics. Although mROS are necessary physiological second messengers, high mROS levels induce oxidative stress, endothelial senescence and apoptosis. Mitochondrial dynamics, including fission, fusion and mitophagy, determine the shape, distribution, size and function of mitochondria. These adaptive responses modify extracellular signals and orchestrate intracellular processes such as cell proliferation, migration, metabolism, angiogenesis, permeability transition, adhesive molecule expression, endothelial barrier function and anticoagulation. In this review, we discuss the involvement of mROS and mitochondrial morphofunction in cardiac microvascular I/R injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Davidson SM, Arjun S, Basalay MV, Bell RM, Bromage DI, Botker HE, Carr RD, Cunningham J, Ghosh AK, Heusch G, Ibanez B, Kleinbongard P, Lecour S, Maddock H, Ovize M, Walker M, Wiart M, Yellon DM (2018) The 10th Biennial Hatter Cardiovascular Institute workshop: cellular protection-evaluating new directions in the setting of myocardial infarction, ischaemic stroke, and cardio-oncology. Basic Res Cardiol 113(6):43. https://doi.org/10.1007/s00395-018-0704-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Murphy E, Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 88(2):581–609. https://doi.org/10.1152/physrev.00024.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Marc MC, Iancu AC, Balanescu S, Dregoesc MI (2019) Microvascular obstruction in acute myocardial infarction: an old and unsolved mystery. Med Pharm Rep 92(3):216–219. https://doi.org/10.15386/mpr-1261

    Article  PubMed  PubMed Central  Google Scholar 

  4. Alakoski T, Ulvila J, Yrjola R, Vainio L, Magga J, Szabo Z, Licht JD, Kerkela R (2019) Inhibition of cardiomyocyte Sprouty1 protects from cardiac ischemia-reperfusion injury. Basic Res Cardiol 114(2):7. https://doi.org/10.1007/s00395-018-0713-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gao XM, Su Y, Moore S, Han LP, Kiriazis H, Lu Q, Zhao WB, Ruze A, Fang BB, Duan MJ, Du XJ (2019) Relaxin mitigates microvascular damage and inflammation following cardiac ischemia-reperfusion. Basic Res Cardiol 114(4):30. https://doi.org/10.1007/s00395-019-0739-9

    Article  CAS  PubMed  Google Scholar 

  6. Rios-Navarro C, Marcos-Garces V, Bayes-Genis A, Husser O, Nunez J, Bodi V (2019) Microvascular obstruction in ST-segment elevation myocardial infarction: looking back to move forward. Focus on CMR. J Clin Med 8:11. https://doi.org/10.3390/jcm8111805

    Article  CAS  Google Scholar 

  7. Heusch G (2019) Coronary microvascular obstruction: the new frontier in cardioprotection. Basic Res Cardiol 114(6):45. https://doi.org/10.1007/s00395-019-0756-8

    Article  CAS  PubMed  Google Scholar 

  8. Chan BYH, Roczkowsky A, Cho WJ, Poirier M, Lee TYT, Mahmud Z, Schulz R (2019) Junctophilin-2 is a target of matrix metalloproteinase-2 in myocardial ischemia-reperfusion injury. Basic Res Cardiol 114(6):42. https://doi.org/10.1007/s00395-019-0749-7

    Article  PubMed  Google Scholar 

  9. Kluge MA, Fetterman JL, Vita JA (2013) Mitochondria and endothelial function. Circ Res 112(8):1171–1188. https://doi.org/10.1161/CIRCRESAHA.111.300233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Caja S, Enriquez JA (2017) Mitochondria in endothelial cells: sensors and integrators of environmental cues. Redox Biol 12:821–827. https://doi.org/10.1016/j.redox.2017.04.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Groschner LN, Waldeck-Weiermair M, Malli R, Graier WF (2012) Endothelial mitochondria–less respiration, more integration. Pflugers Arch 464(1):63–76. https://doi.org/10.1007/s00424-012-1085-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kuznetsov AV, Javadov S, Margreiter R, Grimm M, Hagenbuchner J, Ausserlechner MJ (2019) The role of mitochondria in the mechanisms of cardiac ischemia-reperfusion injury. Antioxidants 8:10. https://doi.org/10.3390/antiox8100454

    Article  CAS  Google Scholar 

  13. Yang M, Linn BS, Zhang Y (1865) Ren J (2019) Mitophagy and mitochondrial integrity in cardiac ischemia-reperfusion injury. Biochim Biophys Acta 9:2293–2302. https://doi.org/10.1016/j.bbadis.2019.05.007

    Article  CAS  Google Scholar 

  14. Liu NB, Wu M, Chen C, Fujino M, Huang JS, Zhu P, Li XK (2019) Novel molecular targets participating in myocardial ischemia-reperfusion injury and cardioprotection. Cardiol Res Pract 2019:6935147. https://doi.org/10.1155/2019/6935147

    Article  PubMed  PubMed Central  Google Scholar 

  15. Birnbaum Y, Tran D, Bajaj M, Ye Y (2019) DPP-4 inhibition by linagliptin prevents cardiac dysfunction and inflammation by targeting the Nlrp3/ASC inflammasome. Basic Res Cardiol 114(5):35. https://doi.org/10.1007/s00395-019-0743-0

    Article  CAS  PubMed  Google Scholar 

  16. Kohlhauer M, Pell VR, Burger N, Spiroski AM, Gruszczyk A, Mulvey JF, Mottahedin A, Costa ASH, Frezza C, Ghaleh B, Murphy MP, Tissier R, Krieg T (2019) Protection against cardiac ischemia-reperfusion injury by hypothermia and by inhibition of succinate accumulation and oxidation is additive. Basic Res Cardiol 114(3):18. https://doi.org/10.1007/s00395-019-0727-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang L, Wang X, Cueto R, Effi C, Zhang Y, Tan H, Qin X, Ji Y, Yang X, Wang H (2019) Biochemical basis and metabolic interplay of redox regulation. Redox Biol 26:101284. https://doi.org/10.1016/j.redox.2019.101284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lim J, Murthy A (2018) Controlling inflammation by selective autophagy. Cell Death Differ 25(5):825–827. https://doi.org/10.1038/s41418-018-0096-5

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bode MF, Hilgendorf I (2019) Integrating basic science in academic cardiology training: two international perspectives on a common challenge. Clin Res Cardiol 108(1):1–5. https://doi.org/10.1007/s00392-018-1294-3

    Article  PubMed  Google Scholar 

  20. Peng J, Li Y, Zhou Y, Zhang L, Liu X, Zuo Z (2018) Pharmacophore modeling, molecular docking and molecular dynamics studies on natural products database to discover novel skeleton as non-purine xanthine oxidase inhibitors. J Recept Signal Transduct Res 38(3):246–255. https://doi.org/10.1080/10799893.2018.1476544

    Article  CAS  PubMed  Google Scholar 

  21. Schmidt HM, Kelley EE, Straub AC (2019) The impact of xanthine oxidase (XO) on hemolytic diseases. Redox Biol 21:101072. https://doi.org/10.1016/j.redox.2018.101072

    Article  CAS  PubMed  Google Scholar 

  22. Incalza MA, D'Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F (2018) Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol 100:1–19. https://doi.org/10.1016/j.vph.2017.05.005

    Article  CAS  PubMed  Google Scholar 

  23. Raghunath A, Sundarraj K, Nagarajan R, Arfuso F, Bian J, Kumar AP, Sethi G, Perumal E (2018) Antioxidant response elements: Discovery, classes, regulation and potential applications. Redox Biol 17:297–314. https://doi.org/10.1016/j.redox.2018.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang J, Hong Z, Zeng C, Yu Q, Wang H (2014) NADPH oxidase 4 promotes cardiac microvascular angiogenesis after hypoxia/reoxygenation in vitro. Free Radical Biol Med 69:278–288. https://doi.org/10.1016/j.freeradbiomed.2014.01.027

    Article  CAS  Google Scholar 

  25. Vendrov AE, Sumida A, Canugovi C, Lozhkin A, Hayami T, Madamanchi NR, Runge MS (2019) NOXA1-dependent NADPH oxidase regulates redox signaling and phenotype of vascular smooth muscle cell during atherogenesis. Redox Biol 21:101063. https://doi.org/10.1016/j.redox.2018.11.021

    Article  CAS  PubMed  Google Scholar 

  26. Orr AW, Woolard MD (2019) Cardiovascular disease is obNOXious: New insights into NoxA1 in smooth muscle phenotype. Redox Biol 22:101081. https://doi.org/10.1016/j.redox.2018.101081

    Article  CAS  PubMed  Google Scholar 

  27. Therade-Matharan S, Laemmel E, Duranteau J, Vicaut E (2004) Reoxygenation after hypoxia and glucose depletion causes reactive oxygen species production by mitochondria in HUVEC. Am J Physiol Regul Integr Comp Physiol 287(5):R1037–1043. https://doi.org/10.1152/ajpregu.00048.2004

    Article  CAS  PubMed  Google Scholar 

  28. Serrano BP, Hardy JA (2018) Phosphorylation by protein kinase A disassembles the caspase-9 core. Cell Death Differ 25(6):1025–1039. https://doi.org/10.1038/s41418-017-0052-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Boengler K, Bornbaum J, Schluter KD, Schulz R (2019) P66shc and its role in ischemic cardiovascular diseases. Basic Res Cardiol 114(4):29. https://doi.org/10.1007/s00395-019-0738-x

    Article  PubMed  Google Scholar 

  30. Kowaltowski AJ (2019) Strategies to detect mitochondrial oxidants. Redox Biol 21:101065. https://doi.org/10.1016/j.redox.2018.101065

    Article  CAS  PubMed  Google Scholar 

  31. Wu L, Tan JL, Chen ZY, Huang G (2019) Cardioprotection of post-ischemic moderate ROS against ischemia/reperfusion via STAT3-induced the inhibition of MCU opening. Basic Res Cardiol 114(5):39. https://doi.org/10.1007/s00395-019-0747-9

    Article  CAS  PubMed  Google Scholar 

  32. Cohen RA, Murdoch CE, Watanabe Y, Bolotina VM, Evangelista AM, Haeussler DJ, Smith MD, Mei Y, Tong X, Han J, Behring JB, Bachschmid MM, Matsui R (2016) Endothelial cell redox regulation of ischemic angiogenesis. J Cardiovasc Pharmacol 67(6):458–464. https://doi.org/10.1097/FJC.0000000000000381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lum H, Barr DA, Shaffer JR, Gordon RJ, Ezrin AM, Malik AB (1992) Reoxygenation of endothelial cells increases permeability by oxidant-dependent mechanisms. Circ Res 70(5):991–998. https://doi.org/10.1161/01.res.70.5.991

    Article  CAS  PubMed  Google Scholar 

  34. Jain R, Mintern JD, Tan I, Dewson G, Strasser A, Gray DHD (2018) How do thymic epithelial cells die? Cell Death Differ 25(5):1002–1004. https://doi.org/10.1038/s41418-018-0093-8

    Article  PubMed  PubMed Central  Google Scholar 

  35. Duraffourd C, Huckstepp RT, Braren I, Fernandes C, Brock O, Delogu A, Prysyazhna O, Burgoyne J, Eaton P (2019) PKG1α oxidation negatively regulates food seeking behaviour and reward. Redox Biol 21:101077. https://doi.org/10.1016/j.redox.2018.101077

    Article  CAS  PubMed  Google Scholar 

  36. Wang L, Ahn YJ, Asmis R (2019) Sexual dimorphism in glutathione metabolism and glutathione-dependent responses. Redox Biol. https://doi.org/10.1016/j.redox.2019.101410

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ter Horst EN, Krijnen PAJ, Hakimzadeh N, Robbers L, Hirsch A, Nijveldt R, Lommerse I, Fontijn RD, Meinster E, Delewi R, van Royen N, Zijlstra F, van Rossum AC, van der Schoot CE, van der Pouw KT, Horrevoets AJ, van der Laan AM, Niessen HWM, Piek JJ (2018) Elevated monocyte-specific type I interferon signalling correlates positively with cardiac healing in myocardial infarct patients but interferon alpha application deteriorates myocardial healing in rats. Basic Res Cardiol 114(1):1. https://doi.org/10.1007/s00395-018-0709-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Audia JP, Yang XM, Crockett ES, Housley N, Haq EU, O'Donnell K, Cohen MV, Downey JM, Alvarez DF (2018) Caspase-1 inhibition by VX-765 administered at reperfusion in P2Y12 receptor antagonist-treated rats provides long-term reduction in myocardial infarct size and preservation of ventricular function. Basic Res Cardiol 113(5):32. https://doi.org/10.1007/s00395-018-0692-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nanayakkara GK, Wang H, Yang X (2019) Proton leak regulates mitochondrial reactive oxygen species generation in endothelial cell activation and inflammation—a novel concept. Arch Biochem Biophys 662:68–74. https://doi.org/10.1016/j.abb.2018.12.002

    Article  CAS  PubMed  Google Scholar 

  40. Yu L, Liang Q, Zhang W, Liao M, Wen M, Zhan B, Bao H, Cheng X (2019) HSP22 suppresses diabetes-induced endothelial injury by inhibiting mitochondrial reactive oxygen species formation. Redox Biol 21:101095. https://doi.org/10.1016/j.redox.2018.101095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hoshino S, Kikuchi Y, Nakajima M, Kimura H, Tsuyama S, Uemura K, Yoshida K (2005) Endothelial NO synthase (eNOS) phosphorylation regulates coronary diameter during ischemia-reperfusion in association with oxidative stress. Free Radic Res 39(5):481–489. https://doi.org/10.1080/10715760500073840

    Article  CAS  PubMed  Google Scholar 

  42. Edwards KS, Ashraf S, Lomax TM, Wiseman JM, Hall ME, Gava FN, Hall JE, Hosler JP, Harmancey R (2018) Uncoupling protein 3 deficiency impairs myocardial fatty acid oxidation and contractile recovery following ischemia/reperfusion. Basic Res Cardiol 113(6):47. https://doi.org/10.1007/s00395-018-0707-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Basalay MV, Davidson SM, Gourine AV, Yellon DM (2018) Neural mechanisms in remote ischaemic conditioning in the heart and brain: mechanistic and translational aspects. Basic Res Cardiol 113(4):25. https://doi.org/10.1007/s00395-018-0684-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Qureshi AW, Altamimy R, El Habhab A, El Itawi H, Farooq MA, Zobairi F, Hasan H, Amoura L, Kassem M, Auger C, Schini-Kerth V, Toti F (2019) Ageing enhances the shedding of splenocyte microvesicles with endothelial pro-senescent effect that is prevented by a short-term intake of omega-3 PUFA EPA:DHA 6:1. Biochem Pharmacol. https://doi.org/10.1016/j.bcp.2019.113734

    Article  PubMed  Google Scholar 

  45. Kuosmanen SM, Sihvola V, Kansanen E, Kaikkonen MU, Levonen AL (2018) MicroRNAs mediate the senescence-associated decline of NRF2 in endothelial cells. Redox Biol 18:77–83. https://doi.org/10.1016/j.redox.2018.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang L, Wang X, Wu Y, Lu X, Chidiac P, Wang G, Feng Q (2018) Maternal diabetes up-regulates NOX2 and enhances myocardial ischaemia/reperfusion injury in adult offspring. J Cell Mol Med 22(4):2200–2209. https://doi.org/10.1111/jcmm.13500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Thapa D, Stoner MW, Zhang M, Xie B, Manning JR, Guimaraes D, Shiva S, Jurczak MJ, Scott I (2018) Adropin regulates pyruvate dehydrogenase in cardiac cells via a novel GPCR-MAPK-PDK4 signaling pathway. Redox Biol 18:25–32. https://doi.org/10.1016/j.redox.2018.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhao L, Tao X, Qi Y, Xu L, Yin L, Peng J (2018) Protective effect of dioscin against doxorubicin-induced cardiotoxicity via adjusting microRNA-140-5p-mediated myocardial oxidative stress. Redox Biol 16:189–198. https://doi.org/10.1016/j.redox.2018.02.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhou H, Hu S, Jin Q, Shi C, Zhang Y, Zhu P, Ma Q, Tian F, Chen Y (2017) MFF-dependent mitochondrial fission contributes to the pathogenesis of cardiac microvasculature ischemia/reperfusion injury via induction of mROS-mediated cardiolipin oxidation and HK2/VDAC1 disassociation-involved mPTP opening. J Am Heart Assoc 6:3. https://doi.org/10.1161/JAHA.116.005328

    Article  Google Scholar 

  50. Mouton AJ, Ma Y, Rivera Gonzalez OJ, Daseke MJ 2nd, Flynn ER, Freeman TC, Garrett MR, DeLeon-Pennell KY, Lindsey ML (2019) Fibroblast polarization over the myocardial infarction time continuum shifts roles from inflammation to angiogenesis. Basic Res Cardiol 114(2):6. https://doi.org/10.1007/s00395-019-0715-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Goh KY, He L, Song J, Jinno M, Rogers AJ, Sethu P, Halade GV, Rajasekaran NS, Liu X, Prabhu SD, Darley-Usmar V (2019) Mitoquinone ameliorates pressure overload-induced cardiac fibrosis and left ventricular dysfunction in mice. Redox Biol 21:101100. https://doi.org/10.1016/j.redox.2019.101100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Blaser H, Dostert C, Mak TW, Brenner D (2016) TNF and ROS crosstalk in inflammation. Trends Cell Biol 26(4):249–261. https://doi.org/10.1016/j.tcb.2015.12.002

    Article  CAS  PubMed  Google Scholar 

  53. Hawkins CL, Davies MJ (2019) Detection, identification and quantification of oxidative protein modifications. J Biol Chem. https://doi.org/10.1074/jbc.REV119.006217

    Article  PubMed  PubMed Central  Google Scholar 

  54. Jang S, Javadov S (2017) Association between ROS production, swelling and the respirasome integrity in cardiac mitochondria. Arch Biochem Biophys 630:1–8. https://doi.org/10.1016/j.abb.2017.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Villacorta L, Minarrieta L, Salvatore SR, Khoo NK, Rom O, Gao Z, Berman RC, Jobbagy S, Li L, Woodcock SR, Chen YE (2018) In situ generation, metabolism and immunomodulatory signaling actions of nitro-conjugated linoleic acid in a murine model of inflammation. Redox Biol 15:522–531. https://doi.org/10.1016/j.redox.2018.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wu X, Zhang L, Miao Y, Yang J, Wang X, Wang CC, Feng J, Wang L (2019) Homocysteine causes vascular endothelial dysfunction by disrupting endoplasmic reticulum redox homeostasis. Redox Biol 20:46–59. https://doi.org/10.1016/j.redox.2018.09.021

    Article  CAS  PubMed  Google Scholar 

  57. Su HH, Liao JM, Wang YH, Chen KM, Lin CW, Lee IH, Li YJ, Huang JY, Tsai SK, Yen JC, Huang SS (2019) Exogenous GDF11 attenuates non-canonical TGF-beta signaling to protect the heart from acute myocardial ischemia-reperfusion injury. Basic Res Cardiol 114(3):20. https://doi.org/10.1007/s00395-019-0728-z

    Article  CAS  PubMed  Google Scholar 

  58. Feno S, Butera G, Vecellio Reane D, Rizzuto R, Raffaello A (2019) Crosstalk between calcium and ROS in pathophysiological conditions. Oxid Med Cell Longev 2019:9324018. https://doi.org/10.1155/2019/9324018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dassanayaka S, Brittian KR, Jurkovic A, Higgins LA, Audam TN, Long BW, Harrison LT, Militello G, Riggs DW, Chitre MG, Uchida S, Muthusamy S, Gumpert AM, Jones SP (2019) E2f1 deletion attenuates infarct-induced ventricular remodeling without affecting O-GlcNAcylation. Basic Res Cardiol 114(4):28. https://doi.org/10.1007/s00395-019-0737-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yakes FM, Van Houten B (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA 94(2):514–519. https://doi.org/10.1073/pnas.94.2.514

    Article  CAS  PubMed  Google Scholar 

  61. Qin CY, Zhang HW, Gu J, Xu F, Liang HM, Fan KJ, Shen JY, Xiao ZH, Zhang EY, Hu J (2017) Mitochondrial DNAinduced inflammatory damage contributes to myocardial ischemia reperfusion injury in rats: cardioprotective role of epigallocatechin. Mol Med Rep 16(5):7569–7576. https://doi.org/10.3892/mmr.2017.7515

    Article  CAS  PubMed  Google Scholar 

  62. Collins SL, Patterson AD (2020) The gut microbiome: an orchestrator of xenobiotic metabolism. Acta Pharm Sin B 10(1):19–32. https://doi.org/10.1016/j.apsb.2019.12.001

    Article  PubMed  Google Scholar 

  63. Beckendorf J, van den Hoogenhof MMG, Backs J (2018) Physiological and unappreciated roles of CaMKII in the heart. Basic Res Cardiol 113(4):29. https://doi.org/10.1007/s00395-018-0688-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Herrero D, Tome M, Canon S, Cruz FM, Carmona RM, Fuster E, Roche E, Bernad A (2018) Redox-dependent BMI1 activity drives in vivo adult cardiac progenitor cell differentiation. Cell Death Differ 25(4):807–820. https://doi.org/10.1038/s41418-017-0022-2

    Article  CAS  PubMed Central  Google Scholar 

  65. Kongpol K, Nernpermpisooth N, Prompunt E, Kumphune S (2019) Endothelial-cell-derived human secretory leukocyte protease inhibitor (SLPI) protects cardiomyocytes against ischemia/reperfusion injury. Biomolecules 9:11. https://doi.org/10.3390/biom9110678

    Article  CAS  Google Scholar 

  66. Buglak NE, Jiang W, Bahnson ES (2018) Cinnamic aldehyde inhibits vascular smooth muscle cell proliferation and neointimal hyperplasia in Zucker diabetic fatty rats. Redox Biol 19:166–178. https://doi.org/10.1016/j.redox.2018.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rusciano MR, Sommariva E, Douin-Echinard V, Ciccarelli M, Poggio P, Maione AS (2019) CaMKII activity in the inflammatory response of cardiac diseases. Int J Mol Sci 20:18. https://doi.org/10.3390/ijms20184374

    Article  CAS  Google Scholar 

  68. Li X, Fang P, Sun Y, Shao Y, Yang WY, Jiang X, Wang H, Yang X (2020) Anti-inflammatory cytokines IL-35 and IL-10 block atherogenic lysophosphatidylcholine-induced, mitochondrial ROS-mediated innate immune activation, but spare innate immune memory signature in endothelial cells. Redox Biol 28:101373. https://doi.org/10.1016/j.redox.2019.101373

    Article  CAS  PubMed  Google Scholar 

  69. Manning JR, Thapa D, Zhang M, Stoner MW, Traba J, Corey C, Shiva S, Sack MN, Scott I (2019) Loss of GCN5L1 in cardiac cells disrupts glucose metabolism and promotes cell death via reduced Akt/mTORC2 signaling. Biochem J 476(12):1713–1724. https://doi.org/10.1042/BCJ20190302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pivovarova-Ramich O, Markova M, Weber D, Sucher S, Hornemann S, Rudovich N, Raila J, Sunaga-Franze D, Sauer S, Rohn S, Pfeiffer AF (2020) Effects of diets high in animal or plant protein on oxidative stress in individuals with type 2 diabetes: a randomized clinical trial. Redox Biol 29:101397. https://doi.org/10.1016/j.redox.2019.101397

    Article  CAS  PubMed  Google Scholar 

  71. Youn SW, Li Y, Kim YM, Sudhahar V, Abdelsaid K, Kim HW, Liu Y, Fulton DJR, Ashraf M, Tang Y, Fukai T, Ushio-Fukai M (2019) Modification of cardiac progenitor cell-derived exosomes by miR-322 provides protection against myocardial infarction through Nox2-dependent angiogenesis. Antioxidants 8:1. https://doi.org/10.3390/antiox8010018

    Article  CAS  Google Scholar 

  72. Zhong H, Song R, Pang Q, Liu Y, Zhuang J, Chen Y, Hu J, Hu J, Liu Y, Liu Z, Tang J (2018) Propofol inhibits parthanatos via ROS-ER-calcium-mitochondria signal pathway in vivo and vitro. Cell Death Dis 9(10):932. https://doi.org/10.1038/s41419-018-0996-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Suresh K, Servinsky L, Reyes J, Undem C, Zaldumbide J, Rentsendorj O, Modekurty S, Dodd OJ, Scott A, Pearse DB, Shimoda LA (2017) CD36 mediates H2O2-induced calcium influx in lung microvascular endothelial cells. Am J Physiol Lung Cell Mol Physiol 312(1):L143–L153. https://doi.org/10.1152/ajplung.00361.2016

    Article  PubMed  Google Scholar 

  74. Kim K, Li J, Tseng A, Andrews RK, Cho J (2015) NOX2 is critical for heterotypic neutrophil-platelet interactions during vascular inflammation. Blood 126(16):1952–1964. https://doi.org/10.1182/blood-2014-10-605261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Xu N, Wang Q, Jiang S, Wang Q, Hu W, Zhou S, Zhao L, Xie L, Chen J, Wellstein A, Lai EY (2019) Fenofibrate improves vascular endothelial function and contractility in diabetic mice. Redox Biol 20:87–97. https://doi.org/10.1016/j.redox.2018.09.024

    Article  CAS  PubMed  Google Scholar 

  76. Manning JR, Thapa D, Zhang M, Stoner MW, Traba J, McTiernan CF, Corey C, Shiva S, Sack MN, Scott I (2019) Cardiac-specific deletion of GCN5L1 restricts recovery from ischemia-reperfusion injury. J Mol Cell Cardiol 129:69–78. https://doi.org/10.1016/j.yjmcc.2019.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Li Y, Zhu X, Liu X, Du A, Yu B (2019) miR-200a mediates protection of thymosin beta-4 in cardiac microvascular endothelial cells as a novel mechanism under hypoxia-reoxygenation injury. J Cell Biochem 120(11):19098–19106. https://doi.org/10.1002/jcb.29237

    Article  CAS  PubMed  Google Scholar 

  78. Wu S, Chang G, Gao L, Jiang D, Wang L, Li G, Luo X, Qin S, Guo X, Zhang D (2018) Trimetazidine protects against myocardial ischemia/reperfusion injury by inhibiting excessive autophagy. J Mol Med 96(8):791–806. https://doi.org/10.1007/s00109-018-1664-3

    Article  CAS  PubMed  Google Scholar 

  79. Li D, Wang X, Huang Q, Li S, Zhou Y, Li Z (2018) Cardioprotection of CAPE-oNO2 against myocardial ischemia/reperfusion induced ROS generation via regulating the SIRT1/eNOS/NF-kappaB pathway in vivo and in vitro. Redox Biol 15:62–73. https://doi.org/10.1016/j.redox.2017.11.023

    Article  CAS  PubMed  Google Scholar 

  80. Drefs M, Thomas MN, Guba M, Angele MK, Werner J, Conrad M, Steib CJ, Holdt LM, Andrassy J, Khandoga A, Rentsch M (2017) Modulation of glutathione hemostasis by inhibition of 12/15-lipoxygenase prevents ROS-mediated cell death after hepatic ischemia and reperfusion. Oxid Med Cell Longev 2017:8325754. https://doi.org/10.1155/2017/8325754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yang L, Zhang Y, Zhu M, Zhang Q, Wang X, Wang Y, Zhang J, Li J, Yang L, Liu J, Liu F, Yang Y, Kang L, Shen Y, Qi Z (2016) Resveratrol attenuates myocardial ischemia/reperfusion injury through up-regulation of vascular endothelial growth factor B. Free Radic Biol Med 101:1–9. https://doi.org/10.1016/j.freeradbiomed.2016.09.016

    Article  CAS  PubMed  Google Scholar 

  82. Lu B, Wang B, Zhong S, Zhang Y, Gao F, Chen Y, Zheng F, Shi G (2016) N-n-butyl haloperidol iodide ameliorates hypoxia/reoxygenation injury through modulating the LKB1/AMPK/ROS pathway in cardiac microvascular endothelial cells. Oncotarget 7(23):34800–34810. https://doi.org/10.18632/oncotarget.9186

    Article  PubMed  PubMed Central  Google Scholar 

  83. Messmer MN, Snyder AG, Oberst A (2019) Comparing the effects of different cell death programs in tumor progression and immunotherapy. Cell Death Differ 26(1):115–129. https://doi.org/10.1038/s41418-018-0214-4

    Article  PubMed  Google Scholar 

  84. Fu B, Zeng Q, Zhang Z, Qian M, Chen J, Dong W, Li M (2019) Epicatechin gallate protects HBMVECs from ischemia/reperfusion injury through ameliorating apoptosis and autophagy and promoting neovascularization. Oxid Med Cell Longev 2019:7824684. https://doi.org/10.1155/2019/7824684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ravindran S, Boovarahan SR, Shanmugam K, Vedarathinam RC, Kurian GA (2017) Sodium thiosulfate preconditioning ameliorates ischemia/reperfusion injury in rat hearts via reduction of oxidative stress and apoptosis. Cardiovasc Drugs Ther 31(5–6):511–524. https://doi.org/10.1007/s10557-017-6751-0

    Article  CAS  PubMed  Google Scholar 

  86. Zhang C, Wang DF, Zhang Z, Han D, Yang K (2017) EGb 761 protects cardiac microvascular endothelial cells against hypoxia/reoxygenation injury and exerts inhibitory effect on the ATM pathway. J Microbiol Biotechnol 27(3):584–590. https://doi.org/10.4014/jmb.1611.11024

    Article  CAS  PubMed  Google Scholar 

  87. Wang AL, Niu Q, Shi N, Wang J, Jia XF, Lian HF, Liu Z, Liu CX (2015) Glutamine ameliorates intestinal ischemia-reperfusion Injury in rats by activating the Nrf2/Are signaling pathway. Int J Clin Exp Pathol 8(7):7896–7904

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Yang Q, Wu W, Li Q, Chen C, Zhou R, Qiu Y, Luo M, Tan Z, Li S, Chen G, Zhou W, Liu J, Yang C, Liu J, Li T (2015) High-dose polymerized hemoglobin fails to alleviate cardiac ischemia/reperfusion injury due to induction of oxidative damage in coronary artery. Oxid Med Cell Longev 2015:125106. https://doi.org/10.1155/2015/125106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lin M, Sun W, Gong W, Zhou Z, Ding Y, Hou Q (2015) Methylophiopogonanone A protects against cerebral ischemia/reperfusion injury and attenuates blood-brain barrier disruption in vitro. PLoS ONE 10(4):e0124558. https://doi.org/10.1371/journal.pone.0124558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhou H, Li D, Zhu P, Ma Q, Toan S, Wang J, Hu S, Chen Y, Zhang Y (2018) Inhibitory effect of melatonin on necroptosis via repressing the Ripk3-PGAM5-CypD-mPTP pathway attenuates cardiac microvascular ischemia-reperfusion injury. J Pineal Res 65(3):e12503. https://doi.org/10.1111/jpi.12503

    Article  CAS  PubMed  Google Scholar 

  91. Migliori M, Cantaluppi V, Mannari C, Bertelli AA, Medica D, Quercia AD, Navarro V, Scatena A, Giovannini L, Biancone L, Panichi V (2015) Caffeic acid, a phenol found in white wine, modulates endothelial nitric oxide production and protects from oxidative stress-associated endothelial cell injury. PLoS ONE 10(4):e0117530. https://doi.org/10.1371/journal.pone.0117530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Uchiyama A, Yamada K, Perera B, Ogino S, Yokoyama Y, Takeuchi Y, Ishikawa O, Motegi S (2015) Protective effect of botulinum toxin A after cutaneous ischemia-reperfusion injury. Sci Rep 5:9072. https://doi.org/10.1038/srep09072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Li T, Zhou R, Yao Y, Yang Q, Zhou C, Wu W, Li Q, You Z, Zhao X, Yang L, Li C, Zhu D, Qiu Y, Luo M, Tan Z, Li H, Chen Y, Gong G, Feng Y, Dian K, Liu J (2014) Angiotensin-converting enzyme inhibitor captopril reverses the adverse cardiovascular effects of polymerized hemoglobin. Antioxid Redox Signal 21(15):2095–2108. https://doi.org/10.1089/ars.2013.5606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Aune SE, Yeh ST, Kuppusamy P, Kuppusamy ML, Khan M, Angelos MG (2013) Sivelestat attenuates myocardial reperfusion injury during brief low flow postischemic infusion. Oxid Med Cell Longev 2013:279847. https://doi.org/10.1155/2013/279847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. George TJ, Arnaoutakis GJ, Beaty CA, Jandu SK, Santhanam L, Berkowitz DE, Shah AS (2012) Hydrogen sulfide decreases reactive oxygen in a model of lung transplantation. J Surg Res 178(1):494–501. https://doi.org/10.1016/j.jss.2012.02.065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang P, Li W, Li L, Wang N, Li X, Gao M, Zheng J, Lei S, Chen X, Lu H, Liu Y (2012) Treatment with edaravone attenuates ischemic brain injury and inhibits neurogenesis in the subventricular zone of adult rats after focal cerebral ischemia and reperfusion injury. Neuroscience 201:297–306. https://doi.org/10.1016/j.neuroscience.2011.11.005

    Article  CAS  PubMed  Google Scholar 

  97. Liang R, Nickkholgh A, Kern M, Schneider H, Benzing S, Zorn M, Buchler MW, Schemmer P (2011) Green tea extract ameliorates reperfusion injury to rat livers after warm ischemia in a dose-dependent manner. Mol Nutr Food Res 55(6):855–863. https://doi.org/10.1002/mnfr.201000643

    Article  CAS  PubMed  Google Scholar 

  98. Wang HH, Wu YJ, Tseng YM, Su CH, Hsieh CL, Yeh HI (2019) Mitochondrial fission protein 1 up-regulation ameliorates senescence-related endothelial dysfunction of human endothelial progenitor cells. Angiogenesis 22(4):569–582. https://doi.org/10.1007/s10456-019-09680-2

    Article  CAS  PubMed  Google Scholar 

  99. Lu J, Shang X, Zhong W, Xu Y, Shi R, Wang X (2020) New insights of CYP1A in endogenous metabolism: a focus on single nucleotide polymorphisms and diseases. Acta Pharm Sin B 10(1):91–104. https://doi.org/10.1016/j.apsb.2019.11.016

    Article  PubMed  Google Scholar 

  100. Bleazard W, McCaffery JM, King EJ, Bale S, Mozdy A, Tieu Q, Nunnari J, Shaw JM (1999) The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nat Cell Biol 1(5):298–304. https://doi.org/10.1038/13014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Darido C, Georgy SR, Cullinane C, Partridge DD, Walker R, Srivastava S, Roslan S, Carpinelli MR, Dworkin S, Pearson RB, Jane SM (2018) Stage-dependent therapeutic efficacy in PI3K/mTOR-driven squamous cell carcinoma of the skin. Cell Death Differ 25(6):1146–1159. https://doi.org/10.1038/s41418-017-0032-0

    Article  CAS  PubMed  Google Scholar 

  102. Ferrier V (2001) Mitochondrial fission in life and death. Nat Cell Biol 3(12):E269. https://doi.org/10.1038/ncb1201-e269

    Article  CAS  PubMed  Google Scholar 

  103. James DI, Parone PA, Mattenberger Y, Martinou JC (2003) hFis1, a novel component of the mammalian mitochondrial fission machinery. J Biol Chem 278(38):36373–36379. https://doi.org/10.1074/jbc.M303758200

    Article  CAS  PubMed  Google Scholar 

  104. Lee H, Yoon Y (2016) Mitochondrial fission and fusion. Biochem Soc Trans 44(6):1725–1735. https://doi.org/10.1042/BST20160129

    Article  CAS  PubMed  Google Scholar 

  105. Zhou H, Li N, Yuan Y, Jin YG, Guo H, Deng W, Tang QZ (2018) Activating transcription factor 3 in cardiovascular diseases: a potential therapeutic target. Basic Res Cardiol 113(5):37. https://doi.org/10.1007/s00395-018-0698-6

    Article  CAS  PubMed  Google Scholar 

  106. Hyun HW, Min SJ, Kim JE (2017) CDK5 inhibitors prevent astroglial apoptosis and reactive astrogliosis by regulating PKA and DRP1 phosphorylations in the rat hippocampus. Neurosci Res 119:24–37. https://doi.org/10.1016/j.neures.2017.01.006

    Article  CAS  PubMed  Google Scholar 

  107. Ganesan V, Willis SD, Chang KT, Beluch S, Cooper KF, Strich R (2019) Cyclin C directly stimulates Drp1 GTP affinity to mediate stress-induced mitochondrial hyperfission. Mol Biol Cell 30(3):302–311. https://doi.org/10.1091/mbc.E18-07-0463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bravo-Sagua R, Parra V, Ortiz-Sandoval C, Navarro-Marquez M, Rodriguez AE, Diaz-Valdivia N, Sanhueza C, Lopez-Crisosto C, Tahbaz N, Rothermel BA, Hill JA, Cifuentes M, Simmen T, Quest AFG, Lavandero S (2019) Author Correction: Caveolin-1 impairs PKA-DRP1-mediated remodelling of ER-mitochondria communication during the early phase of ER stress. Cell Death Differ 26(11):2494. https://doi.org/10.1038/s41418-019-0279-8

    Article  PubMed  PubMed Central  Google Scholar 

  109. Giedt RJ, Yang C, Zweier JL, Matzavinos A, Alevriadou BR (2012) Mitochondrial fission in endothelial cells after simulated ischemia/reperfusion: role of nitric oxide and reactive oxygen species. Free Radical Biol Med 52(2):348–356. https://doi.org/10.1016/j.freeradbiomed.2011.10.491

    Article  CAS  Google Scholar 

  110. Ko AR, Hyun HW, Min SJ, Kim JE (2016) The differential DRP1 phosphorylation and mitochondrial dynamics in the regional specific astroglial death induced by status epilepticus. Front Cell Neurosci 10:124. https://doi.org/10.3389/fncel.2016.00124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Dickey AS, Strack S (2011) PKA/AKAP1 and PP2A/Bbeta2 regulate neuronal morphogenesis via Drp1 phosphorylation and mitochondrial bioenergetics. J Neurosci 31(44):15716–15726. https://doi.org/10.1523/JNEUROSCI.3159-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wang W, Wang Y, Long J, Wang J, Haudek SB, Overbeek P, Chang BH, Schumacker PT, Danesh FR (2012) Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells. Cell Metab 15(2):186–200. https://doi.org/10.1016/j.cmet.2012.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chou CH, Lin CC, Yang MC, Wei CC, Liao HD, Lin RC, Tu WY, Kao TC, Hsu CM, Cheng JT, Chou AK, Lee CI, Loh JK, Howng SL, Hong YR (2012) GSK3beta-mediated Drp1 phosphorylation induced elongated mitochondrial morphology against oxidative stress. PLoS ONE 7(11):e49112. https://doi.org/10.1371/journal.pone.0049112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhou H, Wang S, Zhu P, Hu S, Chen Y, Ren J (2018) Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission. Redox Biol 15:335–346. https://doi.org/10.1016/j.redox.2017.12.019

    Article  CAS  PubMed  Google Scholar 

  115. Cieri D, Vicario M, Giacomello M, Vallese F, Filadi R, Wagner T, Pozzan T, Pizzo P, Scorrano L, Brini M, Cali T (2018) SPLICS: a split green fluorescent protein-based contact site sensor for narrow and wide heterotypic organelle juxtaposition. Cell Death Differ 25(6):1131–1145. https://doi.org/10.1038/s41418-017-0033-z

    Article  CAS  PubMed  Google Scholar 

  116. Kroller-Schon S, Jansen T, Tran TLP, Kvandova M, Kalinovic S, Oelze M, Keaney JF Jr, Foretz M, Viollet B, Daiber A, Kossmann S, Lagrange J, Frenis K, Wenzel P, Munzel T, Schulz E (2019) Endothelial alpha1AMPK modulates angiotensin II-mediated vascular inflammation and dysfunction. Basic Res Cardiol 114(2):8. https://doi.org/10.1007/s00395-019-0717-2

    Article  CAS  PubMed  Google Scholar 

  117. Borgne-Sanchez A, Dupont S, Langonne A, Baux L, Lecoeur H, Chauvier D, Lassalle M, Deas O, Briere JJ, Brabant M, Roux P, Pechoux C, Briand JP, Hoebeke J, Deniaud A, Brenner C, Rustin P, Edelman L, Rebouillat D, Jacotot E (2007) Targeted VPR-derived peptides reach mitochondria to induce apoptosis of alphaVbeta3-expressing endothelial cells. Cell Death Differ 14(3):422–435. https://doi.org/10.1038/sj.cdd.4402018

    Article  CAS  PubMed  Google Scholar 

  118. Jin Q, Li R, Hu N, Xin T, Zhu P, Hu S, Ma S, Zhu H, Ren J, Zhou H (2018) DUSP1 alleviates cardiac ischemia/reperfusion injury by suppressing the MFF-required mitochondrial fission and Bnip3-related mitophagy via the JNK pathways. Redox Biol 14:576–587. https://doi.org/10.1016/j.redox.2017.11.004

    Article  CAS  PubMed  Google Scholar 

  119. Huang M, Wei R, Wang Y, Su T, Li P, Chen X (2018) The uremic toxin hippurate promotes endothelial dysfunction via the activation of Drp1-mediated mitochondrial fission. Redox Biol 16:303–313. https://doi.org/10.1016/j.redox.2018.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhou H, Shi C, Hu S, Zhu H, Ren J, Chen Y (2018) BI1 is associated with microvascular protection in cardiac ischemia reperfusion injury via repressing Syk-Nox2-Drp1-mitochondrial fission pathways. Angiogenesis 21(3):599–615. https://doi.org/10.1007/s10456-018-9611-z

    Article  CAS  PubMed  Google Scholar 

  121. Zhou H, Wang J, Zhu P, Zhu H, Toan S, Hu S, Ren J, Chen Y (2018) NR4A1 aggravates the cardiac microvascular ischemia reperfusion injury through suppressing FUNDC1-mediated mitophagy and promoting Mff-required mitochondrial fission by CK2alpha. Basic Res Cardiol 113(4):23. https://doi.org/10.1007/s00395-018-0682-1

    Article  CAS  PubMed  Google Scholar 

  122. Hou L, Guo J, Xu F, Weng X, Yue W, Ge J (2018) Cardiomyocyte dimethylarginine dimethylaminohydrolase1 attenuates left-ventricular remodeling after acute myocardial infarction: involvement in oxidative stress and apoptosis. Basic Res Cardiol 113(4):28. https://doi.org/10.1007/s00395-018-0685-y

    Article  CAS  PubMed  Google Scholar 

  123. Alvarez-Fernandez M, Sanz-Flores M, Sanz-Castillo B, Salazar-Roa M, Partida D, Zapatero-Solana E, Ali HR, Manchado E, Lowe S, VanArsdale T, Shields D, Caldas C, Quintela-Fandino M, Malumbres M (2018) Therapeutic relevance of the PP2A-B55 inhibitory kinase MASTL/Greatwall in breast cancer. Cell Death Differ 25(5):828–840. https://doi.org/10.1038/s41418-017-0024-0

    Article  CAS  PubMed  Google Scholar 

  124. Zhou H, Zhang Y, Hu S, Shi C, Zhu P, Ma Q, Jin Q, Cao F, Tian F, Chen Y (2017) Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis. J Pineal Res. https://doi.org/10.1111/jpi.12413

    Article  PubMed  PubMed Central  Google Scholar 

  125. Zhu H, Jin Q, Li Y, Ma Q, Wang J, Li D, Zhou H, Chen Y (2018) Melatonin protected cardiac microvascular endothelial cells against oxidative stress injury via suppression of IP3R-[Ca(2+)]c/VDAC-[Ca(2+)]m axis by activation of MAPK/ERK signaling pathway. Cell Stress Chaperones 23(1):101–113. https://doi.org/10.1007/s12192-017-0827-4

    Article  CAS  PubMed  Google Scholar 

  126. Bagati A, Bianchi-Smiraglia A, Moparthy S, Kolesnikova K, Fink EE, Kolesnikova M, Roll MV, Jowdy P, Wolff DW, Polechetti A, Yun DH, Lipchick BC, Paul LM, Wrazen B, Moparthy K, Mudambi S, Morozevich GE, Georgieva SG, Wang J, Shafirstein G, Liu S, Kandel ES, Berman AE, Box NF, Paragh G, Nikiforov MA (2018) FOXQ1 controls the induced differentiation of melanocytic cells. Cell Death Differ 25(6):1040–1049. https://doi.org/10.1038/s41418-018-0066-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Xu T, Ding W, Ao X, Chu X, Wan Q, Wang Y, Xiao D, Yu W, Li M, Yu F, Wang J (2019) ARC regulates programmed necrosis and myocardial ischemia/reperfusion injury through the inhibition of mPTP opening. Redox Biol 20:414–426. https://doi.org/10.1016/j.redox.2018.10.023

    Article  CAS  PubMed  Google Scholar 

  128. Qin R, Lin D, Zhang L, Xiao F, Guo L (2020) Mst1 deletion reduces hyperglycemia-mediated vascular dysfunction via attenuating mitochondrial fission and modulating the JNK signaling pathway. J Cell Physiol 235(1):294–303. https://doi.org/10.1002/jcp.28969

    Article  CAS  PubMed  Google Scholar 

  129. Zhou H, Wang J, Hu S, Zhu H, Toanc S, Ren J (2019) BI1 alleviates cardiac microvascular ischemia-reperfusion injury via modifying mitochondrial fission and inhibiting XO/ROS/F-actin pathways. J Cell Physiol 234(4):5056–5069. https://doi.org/10.1002/jcp.27308

    Article  CAS  PubMed  Google Scholar 

  130. Kohler D, Bibli SI, Klammer LP, Roth JM, Lehmann R, Fleming I, Granja TF, Straub A, Benz PM, Rosenberger P (2018) Phosphorylation of vasodilator-stimulated phosphoprotein contributes to myocardial ischemic preconditioning. Basic Res Cardiol 113(2):11. https://doi.org/10.1007/s00395-018-0667-0

    Article  CAS  PubMed  Google Scholar 

  131. Jones HS, Papageorgiou M, Gordon A, Ehtesham JZ, Wells LK, Greetham S, Doyle B, Hayes N, Rigby A, Atkin SL, Courts FL, Sathyapalan T (2019) Physiologically relevant screening of polyphenol-rich commercial preparations for bioactivity in vascular endothelial cells and application to healthy volunteers: a viable workflow and a cautionary tale. Biochem Pharmacol 11:3754. https://doi.org/10.1016/j.bcp.2019.113754

    Article  CAS  Google Scholar 

  132. Merz J, Albrecht P, von Garlen S, Ahmed I, Dimanski D, Wolf D, Hilgendorf I, Hardtner C, Grotius K, Willecke F, Heidt T, Bugger H, Hoppe N, Kintscher U, von Zur MC, Idzko M, Bode C, Zirlik A, Stachon P (2018) Purinergic receptor Y2 (P2Y2)- dependent VCAM-1 expression promotes immune cell infiltration in metabolic syndrome. Basic Res Cardiol 113(6):45. https://doi.org/10.1007/s00395-018-0702-1

    Article  CAS  PubMed  Google Scholar 

  133. Bacmeister L, Schwarzl M, Warnke S, Stoffers B, Blankenberg S, Westermann D, Lindner D (2019) Inflammation and fibrosis in murine models of heart failure. Basic Res Cardiol 114(3):19. https://doi.org/10.1007/s00395-019-0722-5

    Article  CAS  PubMed  Google Scholar 

  134. Yu T, Sheu SS, Robotham JL, Yoon Y (2008) Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovasc Res 79(2):341–351. https://doi.org/10.1093/cvr/cvn104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wolin MS (2013) Evidence for novel aspects of Nox4 oxidase regulation of mitochondrial function and peroxide generation in an endothelial cell model of senescence. Biochem J 452(2):e1–2. https://doi.org/10.1042/BJ20130484

    Article  CAS  PubMed  Google Scholar 

  136. Archer SL, Fang YH, Ryan JJ, Piao L (2013) Metabolism and bioenergetics in the right ventricle and pulmonary vasculature in pulmonary hypertension. Pulm Circ 3(1):144–152. https://doi.org/10.4103/2045-8932.109960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Pangare M, Makino A (2012) Mitochondrial function in vascular endothelial cell in diabetes. J Smooth Muscle Res 48(1):1–26. https://doi.org/10.1540/jsmr.48.1

    Article  PubMed  PubMed Central  Google Scholar 

  138. Ban Y, Liu Y, Li Y, Zhang Y, Xiao L, Gu Y, Chen S, Zhao B, Chen C, Wang N (2019) S-nitrosation impairs KLF4 activity and instigates endothelial dysfunction in pulmonary arterial hypertension. Redox Biol 21:101099. https://doi.org/10.1016/j.redox.2019.101099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lugus JJ, Ngoh GA, Bachschmid MM, Walsh K (2011) Mitofusins are required for angiogenic function and modulate different signaling pathways in cultured endothelial cells. J Mol Cell Cardiol 51(6):885–893. https://doi.org/10.1016/j.yjmcc.2011.07.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kohlstedt K, Trouvain C, Fromel T, Mudersbach T, Henschler R, Fleming I (2018) Role of the angiotensin-converting enzyme in the G-CSF-induced mobilization of progenitor cells. Basic Res Cardiol 113(3):18. https://doi.org/10.1007/s00395-018-0677-y

    Article  CAS  PubMed  Google Scholar 

  141. Cho SG, Xiao X, Wang S, Gao H, Rafikov R, Black S, Huang S, Ding HF, Yoon Y, Kirken RA, Yin XM, Wang HG, Dong Z (2019) Bif-1 interacts with prohibitin-2 to regulate mitochondrial inner membrane during cell stress and apoptosis. J Am Soc Nephrol 30(7):1174–1191. https://doi.org/10.1681/ASN.2018111117

    Article  PubMed  Google Scholar 

  142. Seo BJ, Yoon SH, Do JT (2018) Mitochondrial dynamics in stem cells and differentiation. Int J Mol Sci 19:12. https://doi.org/10.3390/ijms19123893

    Article  CAS  Google Scholar 

  143. Kanaan GN, Ichim B, Gharibeh L, Maharsy W, Patten DA, Xuan JY, Reunov A, Marshall P, Veinot J, Menzies K, Nemer M, Harper ME (2018) Glutaredoxin-2 controls cardiac mitochondrial dynamics and energetics in mice, and protects against human cardiac pathologies. Redox Biol 14:509–521. https://doi.org/10.1016/j.redox.2017.10.019

    Article  CAS  PubMed  Google Scholar 

  144. Liu L, Jin X, Hu CF, Zhang YP, Zhou Z, Li R, Shen CX (2018) Amphiregulin enhances cardiac fibrosis and aggravates cardiac dysfunction in mice with experimental myocardial infarction partly through activating EGFR-dependent pathway. Basic Res Cardiol 113(2):12. https://doi.org/10.1007/s00395-018-0669-y

    Article  CAS  PubMed  Google Scholar 

  145. Jendrach M, Mai S, Pohl S, Voth M, Bereiter-Hahn J (2008) Short- and long-term alterations of mitochondrial morphology, dynamics and mtDNA after transient oxidative stress. Mitochondrion 8(4):293–304. https://doi.org/10.1016/j.mito.2008.06.001

    Article  CAS  PubMed  Google Scholar 

  146. Ban T, Kohno H, Ishihara T, Ishihara N (2018) Relationship between OPA1 and cardiolipin in mitochondrial inner-membrane fusion. Biochim Biophys Acta Bioenerg 59(9):951–957. https://doi.org/10.1016/j.bbabio.2018.05.016

    Article  CAS  Google Scholar 

  147. Makino A, Scott BT, Dillmann WH (2010) Mitochondrial fragmentation and superoxide anion production in coronary endothelial cells from a mouse model of type 1 diabetes. Diabetologia 53(8):1783–1794. https://doi.org/10.1007/s00125-010-1770-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. McInerney MP, Volitakis I, Bush AI, Banks WA, Short JL, Nicolazzo JA (2018) Ionophore and biometal modulation of P-glycoprotein expression and function in human brain microvascular endothelial cells. Pharm Res 35(4):83. https://doi.org/10.1007/s11095-018-2377-6

    Article  CAS  PubMed  Google Scholar 

  149. Prasai PK, Shrestha B, Orr AW, Pattillo CB (2018) Decreases in GSH:GSSG activate vascular endothelial growth factor receptor 2 (VEGFR2) in human aortic endothelial cells. Redox Biol 19:22–27. https://doi.org/10.1016/j.redox.2018.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Merdzo I, Rutkai I, Sure VN, McNulty CA, Katakam PV, Busija DW (2017) Impaired mitochondrial respiration in large cerebral arteries of rats with type 2 diabetes. J Vasc Res 54(1):1–12. https://doi.org/10.1159/000454812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ma ZG, Dai J, Yuan YP, Bian ZY, Xu SC, Jin YG, Zhang X, Tang QZ (2018) T-bet deficiency attenuates cardiac remodelling in rats. Basic Res Cardiol 113(3):19. https://doi.org/10.1007/s00395-018-0678-x

    Article  CAS  PubMed  Google Scholar 

  152. Nuntaphum W, Pongkan W, Wongjaikam S, Thummasorn S, Tanajak P, Khamseekaew J, Intachai K, Chattipakorn SC, Chattipakorn N, Shinlapawittayatorn K (2018) Vagus nerve stimulation exerts cardioprotection against myocardial ischemia/reperfusion injury predominantly through its efferent vagal fibers. Basic Res Cardiol 113(4):22. https://doi.org/10.1007/s00395-018-0683-0

    Article  CAS  PubMed  Google Scholar 

  153. Park JB, Nagar H, Choi S, Jung SB, Kim HW, Kang SK, Lee JW, Lee JH, Park JW, Irani K, Jeon BH, Song HJ, Kim CS (2016) IDH2 deficiency impairs mitochondrial function in endothelial cells and endothelium-dependent vasomotor function. Free Radic Biol Med 94:36–46. https://doi.org/10.1016/j.freeradbiomed.2016.02.017

    Article  CAS  PubMed  Google Scholar 

  154. Liu P, Xie Q, Wei T, Chen Y, Chen H, Shen W (2015) Activation of the NLRP3 inflammasome induces vascular dysfunction in obese OLETF rats. Biochem Biophys Res Commun 468(1–2):319–325. https://doi.org/10.1016/j.bbrc.2015.10.105

    Article  CAS  PubMed  Google Scholar 

  155. Jung M, Dodsworth M, Thum T (2018) Inflammatory cells and their non-coding RNAs as targets for treating myocardial infarction. Basic Res Cardiol 114(1):4. https://doi.org/10.1007/s00395-018-0712-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Mouton AJ, DeLeon-Pennell KY, Rivera Gonzalez OJ, Flynn ER, Freeman TC, Saucerman JJ, Garrett MR, Ma Y, Harmancey R, Lindsey ML (2018) Mapping macrophage polarization over the myocardial infarction time continuum. Basic Res Cardiol 113(4):26. https://doi.org/10.1007/s00395-018-0686-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Xue J, Yan X, Yang Y, Chen M, Wu L, Gou Z, Sun Z, Talabieke S, Zheng Y, Luo D (2019) Connexin 43 dephosphorylation contributes to arrhythmias and cardiomyocyte apoptosis in ischemia/reperfusion hearts. Basic Res Cardiol 114(5):40. https://doi.org/10.1007/s00395-019-0748-8

    Article  CAS  PubMed  Google Scholar 

  158. Veeranki S, Tyagi SC (2017) Mdivi-1 induced acute changes in the angiogenic profile after ischemia-reperfusion injury in female mice. Physiol Rep 5:11. https://doi.org/10.14814/phy2.13298

    Article  CAS  Google Scholar 

  159. Zhou X, Wu Y, Ye L, Wang Y, Zhang K, Wang L, Huang Y, Wang L, Xian S, Zhang Y, Chen Y (2019) Aspirin alleviates endothelial gap junction dysfunction through inhibition of NLRP3 inflammasome activation in LPS-induced vascular injury. Acta Pharm Sin B 9(4):711–723. https://doi.org/10.1016/j.apsb.2019.02.008

    Article  PubMed  PubMed Central  Google Scholar 

  160. Botker HE, Hausenloy D, Andreadou I, Antonucci S, Boengler K, Davidson SM, Deshwal S, Devaux Y, Di Lisa F, Di Sante M, Efentakis P, Femmino S, Garcia-Dorado D, Giricz Z, Ibanez B, Iliodromitis E, Kaludercic N, Kleinbongard P, Neuhauser M, Ovize M, Pagliaro P, Rahbek-Schmidt M, Ruiz-Meana M, Schluter KD, Schulz R, Skyschally A, Wilder C, Yellon DM, Ferdinandy P, Heusch G (2018) Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection. Basic Res Cardiol 113(5):39. https://doi.org/10.1007/s00395-018-0696-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Coverstone ED, Bach RG, Chen L, Bierut LJ, Li AY, Lenzini PA, O'Neill HC, Spertus JA, Sucharov CC, Stitzel JA, Schilling JD, Cresci S (2018) A novel genetic marker of decreased inflammation and improved survival after acute myocardial infarction. Basic Res Cardiol 113(5):38. https://doi.org/10.1007/s00395-018-0697-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Familtseva A, Kalani A, Chaturvedi P, Tyagi N, Metreveli N, Tyagi SC (2014) Mitochondrial mitophagy in mesenteric artery remodeling in hyperhomocysteinemia. Physiol Rep 2(4):e00283. https://doi.org/10.14814/phy2.283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Zhou H, Du W, Li Y, Shi C, Hu N, Ma S, Wang W, Ren J (2018) Effects of melatonin on fatty liver disease: the role of NR4A1/DNA-PKcs/p53 pathway, mitochondrial fission, and mitophagy. J Pineal Res. https://doi.org/10.1111/jpi.12450

    Article  PubMed  Google Scholar 

  164. Wu X, Wu F-H, Wu Q, Zhang S, Chen S, Sima M (2017) Phylogenetic and molecular evolutionary analysis of mitophagy receptors under hypoxic conditions. Front Physiol. https://doi.org/10.3389/fphys.2017.00539

    Article  PubMed  PubMed Central  Google Scholar 

  165. Li R, Xin T, Li D, Wang C, Zhu H, Zhou H (2018) Therapeutic effect of Sirtuin 3 on ameliorating nonalcoholic fatty liver disease: The role of the ERK-CREB pathway and Bnip3-mediated mitophagy. Redox Biol 18:229–243. https://doi.org/10.1016/j.redox.2018.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zhou H, Ma Q, Zhu P, Ren J, Reiter RJ, Chen Y (2018) Protective role of melatonin in cardiac ischemia-reperfusion injury: From pathogenesis to targeted therapy. J Pineal Res 64:3. https://doi.org/10.1111/jpi.12471

    Article  CAS  Google Scholar 

  167. Kuang Y, Ma K, Zhou C, Ding P, Zhu Y, Chen Q, Xia B (2016) Structural basis for the phosphorylation of FUNDC1 LIR as a molecular switch of mitophagy. Autophagy 12(12):2363–2373. https://doi.org/10.1080/15548627.2016.1238552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Lv M, Wang C, Li F, Peng J, Wen B, Gong Q, Shi Y, Tang Y (2017) Structural insights into the recognition of phosphorylated FUNDC1 by LC3B in mitophagy. Protein Cell 8(1):25–38. https://doi.org/10.1007/s13238-016-0328-8

    Article  CAS  PubMed  Google Scholar 

  169. Yan C, Gong L, Chen L, Xu M, Abou-Hamdan H, Tang M, Desaubry L, Song Z (2019) PHB2 (prohibitin 2) promotes PINK1-PRKN/Parkin-dependent mitophagy by the PARL-PGAM5-PINK1 axis. Autophagy. https://doi.org/10.1080/15548627.2019.1628520

    Article  PubMed  PubMed Central  Google Scholar 

  170. Pennington SM, Klutho PR, Xie L, Broadhurst K, Koval OM, McCormick ML, Spitz DR, Grumbach IM (2018) Defective protein repair under methionine sulfoxide A deletion drives autophagy and ARE-dependent gene transcription. Redox Biol 16:401–413. https://doi.org/10.1016/j.redox.2018.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Zhou H, Zhu P, Wang J, Zhu H, Ren J, Chen Y (2018) Pathogenesis of cardiac ischemia reperfusion injury is associated with CK2alpha-disturbed mitochondrial homeostasis via suppression of FUNDC1-related mitophagy. Cell Death Differ 25(6):1080–1093. https://doi.org/10.1038/s41418-018-0086-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Zhou H, Zhu P, Guo J, Hu N, Wang S, Li D, Hu S, Ren J, Cao F, Chen Y (2017) Ripk3 induces mitochondrial apoptosis via inhibition of FUNDC1 mitophagy in cardiac IR injury. Redox Biol 13:498–507. https://doi.org/10.1016/j.redox.2017.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Yang Y, Sun Y, Chen J, Bradley WE, Dell’Italia LJ, Wu H, Chen Y (2018) AKT-independent activation of p38 MAP kinase promotes vascular calcification. Redox Biol 16:97–103. https://doi.org/10.1016/j.redox.2018.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Zhang W, Ren H, Xu C, Zhu C, Wu H, Liu D, Wang J, Liu L, Li W, Ma Q, Du L, Zheng M, Zhang C, Liu J, Chen Q (2016) Hypoxic mitophagy regulates mitochondrial quality and platelet activation and determines severity of I/R heart injury. Elife. https://doi.org/10.7554/eLife.21407

    Article  PubMed  PubMed Central  Google Scholar 

  175. Zhou H, Li D, Zhu P, Hu S, Hu N, Ma S, Zhang Y, Han T, Ren J, Cao F, Chen Y (2017) Melatonin suppresses platelet activation and function against cardiac ischemia/reperfusion injury via PPARgamma/FUNDC1/mitophagy pathways. J Pineal Res. https://doi.org/10.1111/jpi.12438

    Article  PubMed  PubMed Central  Google Scholar 

  176. Jiang X, Liu Y, Liu X, Wang W, Wang Z, Hu Y, Zhang Y, Zhang Y, Jose PA, Wei Q, Yang Z (2018) Amelioration of mitochondrial dysfunction in heart failure through S-sulfhydration of Ca/calmodulin-dependent protein kinase II. Redox Biol 19:250–262. https://doi.org/10.1016/j.redox.2018.08.008

    Article  CAS  Google Scholar 

  177. Eid RA, Alkhateeb MA, Eleawa S, Al-Hashem FH, Al-Shraim M, El-Kott AF, Zaki MSA, Dallak MA, Aldera H (2018) Cardioprotective effect of ghrelin against myocardial infarction-induced left ventricular injury via inhibition of SOCS3 and activation of JAK2/STAT3 signaling. Basic Res Cardiol 113(2):13. https://doi.org/10.1007/s00395-018-0671-4

    Article  CAS  PubMed  Google Scholar 

  178. Eiringhaus J, Herting J, Schatter F, Nikolaev VO, Sprenger J, Wang Y, Kohn M, Zabel M, El-Armouche A, Hasenfuss G, Sossalla S, Fischer TH (2019) Protein kinase/phosphatase balance mediates the effects of increased late sodium current on ventricular calcium cycling. Basic Res Cardiol 114(2):13. https://doi.org/10.1007/s00395-019-0720-7

    Article  CAS  PubMed  Google Scholar 

  179. Denton D, Kumar S (2019) Autophagy-dependent cell death. Cell Death Differ 26(4):605–616. https://doi.org/10.1038/s41418-018-0252-y

    Article  CAS  PubMed  Google Scholar 

  180. Bernhart E, Kogelnik N, Prasch J, Gottschalk B, Goeritzer M, Depaoli MR, Reicher H, Nusshold C, Plastira I, Hammer A, Fauler G (2018) 2-Chlorohexadecanoic acid induces ER stress and mitochondrial dysfunction in brain microvascular endothelial cells. Redox Biol 15:441–451. https://doi.org/10.1016/j.redox.2018.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Lan R, Wu JT, Wu T, Ma YZ, Wang BQ, Zheng HZ, Li YN, Wang Y, Gu CQ, Zhang Y (2018) Mitophagy is activated in brain damage induced by cerebral ischemia and reperfusion via the PINK1/Parkin/p62 signalling pathway. Brain Res Bull 142:63–77. https://doi.org/10.1016/j.brainresbull.2018.06.018

    Article  CAS  PubMed  Google Scholar 

  182. Zhou H, Wang S, Hu S, Chen Y, Ren J (2018) ER-mitochondria microdomains in cardiac ischemia-reperfusion injury: a fresh perspective. Front Physiol 9:755. https://doi.org/10.3389/fphys.2018.00755

    Article  PubMed  PubMed Central  Google Scholar 

  183. Sun T, Ding W, Xu T, Ao X, Yu T, Li M, Liu Y, Zhang X, Hou L, Wang J (2019) Parkin regulates programmed necrosis and myocardial ischemia/reperfusion injury by targeting cyclophilin-D. Antioxid Redox Signal 31(16):1177–1193. https://doi.org/10.1089/ars.2019.7734

    Article  CAS  PubMed  Google Scholar 

  184. Cao S, Sun Y, Wang W, Wang B, Zhang Q, Pan C, Yuan Q, Xu F, Wei S, Chen Y (2019) Poly (ADP-ribose) polymerase inhibition protects against myocardial ischaemia/reperfusion injury via suppressing mitophagy. J Cell Mol Med 23(10):6897–6906. https://doi.org/10.1111/jcmm.14573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Capece D, D'Andrea D, Verzella D, Tornatore L, Begalli F, Bennett J, Zazzeroni F, Franzoso G (2018) Turning an old GADDget into a troublemaker. Cell Death Differ 25(4):640–642. https://doi.org/10.1038/s41418-018-0087-6

    Article  CAS  PubMed Central  Google Scholar 

  186. Givvimani S, Munjal C, Tyagi N, Sen U, Metreveli N, Tyagi SC (2012) Mitochondrial division/mitophagy inhibitor (Mdivi) ameliorates pressure overload induced heart failure. PLoS ONE 7(3):e32388. https://doi.org/10.1371/journal.pone.0032388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Wang D, Wang Y, Zou X, Shi Y, Liu Q, Huyan T, Su J, Wang Q, Zhang F, Li X, Tie L (2019) FOXO1 inhibition prevents renal ischemia-reperfusion injury via promotion of CREB/PGC-1alpha-mediated mitochondrial biogenesis. Br J Pharmacol. https://doi.org/10.1111/bph.14878

    Article  PubMed  PubMed Central  Google Scholar 

  188. Park M, Sandner P, Krieg T (2018) cGMP at the centre of attention: emerging strategies for activating the cardioprotective PKG pathway. Basic Res Cardiol 113(4):24. https://doi.org/10.1007/s00395-018-0679-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Sun XL, Zhang YL, Xi SM, Ma LJ, Li SP (2019) MiR-330-3p suppresses phosphoglycerate mutase family member 5 -inducted mitophagy to alleviate hepatic ischemia-reperfusion injury. J Cell Biochem 120(3):4255–4267. https://doi.org/10.1002/jcb.27711

    Article  CAS  PubMed  Google Scholar 

  190. Wu W, Xu H, Wang Z, Mao Y, Yuan L, Luo W, Cui Z, Cui T, Wang XL, Shen YH (2015) PINK1-Parkin-mediated mitophagy protects mitochondrial integrity and prevents metabolic stress-induced endothelial injury. PLoS ONE 10(7):e0132499. https://doi.org/10.1371/journal.pone.0132499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Zhou P, Xie W, Meng X, Zhai Y, Dong X, Zhang X, Sun G, Sun X (2019) Notoginsenoside R1 ameliorates diabetic retinopathy through PINK1-dependent activation of mitophagy. Cells 8:3. https://doi.org/10.3390/cells8030213

    Article  CAS  Google Scholar 

  192. Ma X, Luo Q, Zhu H, Liu X, Dong Z, Zhang K, Zou Y, Wu J, Ge J, Sun A (2018) Aldehyde dehydrogenase 2 activation ameliorates CCl4 -induced chronic liver fibrosis in mice by up-regulating Nrf2/HO-1 antioxidant pathway. J Cell Mol Med. https://doi.org/10.1111/jcmm.13677

    Article  PubMed  PubMed Central  Google Scholar 

  193. Jin K, Luo Z, Zhang B, Pang Z (2018) Biomimetic nanoparticles for inflammation targeting. Acta Pharm Sin B 8(1):23–33. https://doi.org/10.1016/j.apsb.2017.12.002

    Article  PubMed  Google Scholar 

  194. Cho HJ, Switzer CH, Kamynina A, Charles R, Rudyk O, Ng T, Burgoyne JR, Eaton P (2020) Complex interrelationships between nitro-alkene-dependent inhibition of soluble epoxide hydrolase, inflammation and tumor growth. Redox Biol 29:101405. https://doi.org/10.1016/j.redox.2019.101405

    Article  CAS  PubMed  Google Scholar 

  195. Walsh TG, van den Bosch MTJ, Lewis KE, Williams CM, Poole AW (2018) Loss of the mitochondrial kinase PINK1 does not alter platelet function. Sci Rep 8(1):14377. https://doi.org/10.1038/s41598-018-32716-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Takahashi Y, Nishimura T, Higuchi K, Noguchi S, Tega Y, Kurosawa T, Deguchi Y, Tomi M (2018) Transport of pregabalin via L-type amino acid transporter 1 (SLC7A5) in human brain capillary endothelial cell line. Pharm Res 35(12):246. https://doi.org/10.1007/s11095-018-2532-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Tyagi N, Qipshidze N, Sen U, Rodriguez W, Ovechkin A, Tyagi SC (2011) Cystathionine beta synthase gene dose dependent vascular remodeling in murine model of hyperhomocysteinemia. Int J Physiol Pathophysiol Pharmacol 3(3):210–222

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Jiang X, Liu Y, Liu X, Wang W, Wang Z, Hu Y, Zhang Y, Zhang Y, Jose PA, Wei Q, Yang Z (2018) Over-expression of a cardiac-specific human dopamine D5 receptor mutation in mice causes a dilated cardiomyopathy through ROS over-generation by NADPH oxidase activation and Nrf2 degradation. Redox Biol 19:134–146. https://doi.org/10.1016/j.redox.2018.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Tseng AH, Shieh SS, Wang DL (2013) SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage. Free Radic Biol Med 63:222–234. https://doi.org/10.1016/j.freeradbiomed.2013.05.002

    Article  CAS  PubMed  Google Scholar 

  200. Singh LP (2013) Thioredoxin interacting protein (TXNIP) and pathogenesis of diabetic retinopathy. J Clin Exp Ophthalmol. https://doi.org/10.4172/2155-9570.1000287

    Article  PubMed  PubMed Central  Google Scholar 

  201. Goy C, Czypiorski P, Altschmied J, Jakob S, Rabanter LL, Brewer AC, Ale-Agha N, Dyballa-Rukes N, Shah AM, Haendeler J (2014) The imbalanced redox status in senescent endothelial cells is due to dysregulated Thioredoxin-1 and NADPH oxidase 4. Exp Gerontol 56:45–52. https://doi.org/10.1016/j.exger.2014.03.005

    Article  CAS  PubMed  Google Scholar 

  202. Yang L, Shen ZY, Wang RR, Yin ML, Zheng WP, Wu B, Liu T, Song HL (2017) Effects of heme oxygenase-1-modified bone marrow mesenchymal stem cells on microcirculation and energy metabolism following liver transplantation. World J Gastroenterol 23(19):3449–3467. https://doi.org/10.3748/wjg.v23.i19.3449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Benischke AS, Vasanth S, Miyai T, Katikireddy KR, White T, Chen Y, Halilovic A, Price M, Price F Jr, Liton PB, Jurkunas UV (2017) Activation of mitophagy leads to decline in Mfn2 and loss of mitochondrial mass in Fuchs endothelial corneal dystrophy. Sci Rep 7(1):6656. https://doi.org/10.1038/s41598-017-06523-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Deussen A (2018) Mechanisms underlying coronary autoregulation continue to await clarification. Basic Res Cardiol 113(5):34. https://doi.org/10.1007/s00395-018-0693-y

    Article  PubMed  Google Scholar 

  205. Afonso MB, Rodrigues PM, Simao AL, Gaspar MM, Carvalho T, Borralho P, Banales JM, Castro RE, Rodrigues CMP (2018) miRNA-21 ablation protects against liver injury and necroptosis in cholestasis. Cell Death Differ 25(5):857–872. https://doi.org/10.1038/s41418-017-0019-x

    Article  CAS  PubMed  Google Scholar 

  206. Allencherril J, Jneid H, Atar D, Alam M, Levine G, Kloner RA, Birnbaum Y (2019) Pathophysiology, diagnosis, and management of the no-reflow phenomenon. Cardiovasc Drugs Ther. https://doi.org/10.1007/s10557-019-06901-0

    Article  PubMed  Google Scholar 

  207. Scarabelli T, Stephanou A, Rayment N, Pasini E, Comini L, Curello S, Ferrari R, Knight R, Latchman D (2001) Apoptosis of endothelial cells precedes myocyte cell apoptosis in ischemia/reperfusion injury. Circulation 104(3):253–256. https://doi.org/10.1161/01.cir.104.3.253

    Article  CAS  PubMed  Google Scholar 

  208. Heusch G (2018) 25 years of remote ischemic conditioning: from laboratory curiosity to clinical outcome. Basic Res Cardiol 113(3):15. https://doi.org/10.1007/s00395-018-0673-2

    Article  PubMed  Google Scholar 

  209. Baker HE, Kiel AM, Luebbe ST, Simon BR, Earl CC, Regmi A, Roell WC, Mather KJ, Tune JD, Goodwill AG (2019) Inhibition of sodium-glucose cotransporter-2 preserves cardiac function during regional myocardial ischemia independent of alterations in myocardial substrate utilization. Basic Res Cardiol 114(3):25. https://doi.org/10.1007/s00395-019-0733-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Patel DK, Strong J (2019) The pleiotropic effects of sodium-glucose cotransporter-2 inhibitors: beyond the glycemic benefit. Diabetes Ther 10(5):1771–1792. https://doi.org/10.1007/s13300-019-00686-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Amanakis G, Kleinbongard P, Heusch G, Skyschally A (2019) Attenuation of ST-segment elevation after ischemic conditioning maneuvers reflects cardioprotection online. Basic Res Cardiol 114(3):22. https://doi.org/10.1007/s00395-019-0732-3

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Jun Ren in University of Wyoming and Prof. Yundai Chen in PLA General Hospital for their helpful discussions.

Funding

This work was supported in part by China Postdoctoral Science Foundation (2019TQ0128) and the NSFC (81900252, 81900254 and 81870249).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Zhou.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Toan, S. & Zhou, H. New insights into the role of mitochondria in cardiac microvascular ischemia/reperfusion injury. Angiogenesis 23, 299–314 (2020). https://doi.org/10.1007/s10456-020-09720-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-020-09720-2

Keywords

Navigation