Skip to main content

Advertisement

Log in

Activating transcription factor 3 in cardiovascular diseases: a potential therapeutic target

  • Review
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Cardiovascular diseases (CVDs) are the primary causes of death worldwide. Among the numerous signaling molecules involved in CVDs, transcriptional factors directly influence gene expression and play a critical role in regulating cell function and the development of diseases. Activating transcription factor (ATF) 3 is an adaptive-response gene in the ATF/cAMP responsive element-binding (CREB) protein family of transcription factors that acts as either a repressor or an activator of transcription via the formation of homodimers or heterodimers with other ATF/CREB members. A appropriate ATF3 expression is important for the normal physiology of cells, and dysfunction of ATF3 is associated with various pathophysiological responses such as inflammation, apoptosis, oxidative stress and endoplasmic reticulum stress, and diseases, including CVDs. This review focuses on the role of ATF3 in cardiac hypertrophy, heart failure, atherosclerosis, ischemic heart diseases, hypertension and diabetes mellitus to provide a novel therapeutic target for CVDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ALK:

Activin receptor-like kinase

Ang II:

Angiotensin II

ATF:

Activating transcription factor

bZIP:

Basic-region leucine zipper

CRE:

cAMP responsive element

CREB:

cAMP responsive element binding

CVDs:

Cardiovascular diseases

CXCL:

C-X-C motif chemokine ligand

CXCR:

C-X-C motif chemokine receptor

DM:

Diabetes mellitus

DOX:

Doxorubicin

ECs:

Endothelial cells

EGFR:

Epidermal growth factor receptor

Egr1:

Early growth response protein 1

ERK:

Extracellular signal-regulated kinase

ET-1:

Endothelin-1

HDL:

High-density lipoprotein

HF:

Heart failure

HFD:

High-fat diet

HUVECs:

Human umbilical vein endothelial cells

ICAM:

Intercellular cell adhesion molecule

IFNγ:

Interferon γ

IHD:

Ischemic heart diseases

IL:

Interleukin

IP:

Ischemic preconditioning

I/R:

Ischemia/reperfusion

IRF7:

Interferon regulatory factor 7

JNK:

c-Jun N-terminal kinase

KLF:

Krueppel-like factor

KO:

Knockout

LPC:

Lysophosphatidylcholine

LPS:

Lipopolysaccharide

Map2K3:

Mitogen-activated protein kinase kinase 3

MED:

Methionine-enriched diet

MEK:

MAPK/ERK kinase

MI:

Myocardial infarction

MKK7:

MAPK kinase 7

MMPs:

Matrix metalloproteinases

NAFLD:

Non-alcoholic fatty liver disease

NF-κB:

Nuclear factor-κB

NO:

Nitric oxide

oxLDL:

Oxidized low-density lipoprotein

PCNA:

Proliferating cell nuclear antigen

PE:

Phenylephrine

PI3K:

Phosphatidylinositol 3-kinase

PKA:

Protein kinase A

SAPK:

Stress-activated protein kinase

SMCs:

Smooth muscle cells

tBHQ:

tert-Butylhydroquinone

TGF-β:

Transforming growth factor-β

TGRL:

Triglyceride-rich lipoproteins

TLR:

Toll-like receptor

TNF-α:

Tumor necrosis factor-α

T2DM:

Type 2 DM

VSMCs:

Vascular smooth muscle cells

ZDF:

Zucker Diabetic Fatty

References

  1. Aggarwal M, Aggarwal B, Rao J (2017) Integrative medicine for cardiovascular disease and prevention. Med Clin N Am 101:895–923. https://doi.org/10.1016/j.mcna.2017.04.007

    Article  PubMed  Google Scholar 

  2. Akazawa H (2015) Mechanisms of cardiovascular homeostasis and pathophysiology—from gene expression, signal transduction to cellular communication. Circ J 79:2529–2536. https://doi.org/10.1253/circj.CJ-15-0818

    Article  PubMed  CAS  Google Scholar 

  3. Altena R, Fehrmann RS, Boer H, de Vries EG, Meijer C, Gietema JA (2015) Growth differentiation factor 15 (GDF-15) plasma levels increase during bleomycin- and cisplatin-based treatment of testicular cancer patients and relate to endothelial damage. PLoS One 10:e0115372. https://doi.org/10.1371/journal.pone.0115372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Aung HH, Altman R, Nyunt T, Kim J, Nuthikattu S, Budamagunta M, Voss JC, Wilson D, Rutledge JC, Villablanca AC (2016) Lipotoxic brain microvascular injury is mediated by activating transcription factor 3-dependent inflammatory and oxidative stress pathways. J Lipid Res 57:955–968. https://doi.org/10.1194/jlr.M061853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Aung HH, Lame MW, Gohil K, An CI, Wilson DW, Rutledge JC (2013) Induction of ATF3 gene network by triglyceride-rich lipoprotein lipolysis products increases vascular apoptosis and inflammation. Arterioscler Thromb Vasc Biol 33:2088–2096. https://doi.org/10.1161/ATVBAHA.113.301375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Aung HH, Tsoukalas A, Rutledge JC, Tagkopoulos I (2014) A systems biology analysis of brain microvascular endothelial cell lipotoxicity. BMC Syst Biol 8:80. https://doi.org/10.1186/1752-0509-8-80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bauer AJ, Martin KA (2017) Coordinating regulation of gene expression in cardiovascular disease: interactions between chromatin modifiers and transcription factors. Front Cardiovasc Med 4:19. https://doi.org/10.3389/fcvm.2017.00019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Bentzon JF, Otsuka F, Virmani R, Falk E (2014) Mechanisms of plaque formation and rupture. Circ Res 114:1852–1866. https://doi.org/10.1161/CIRCRESAHA.114.302721

    Article  PubMed  CAS  Google Scholar 

  9. Brooks AC, DeMartino AM, Brainard RE, Brittian KR, Bhatnagar A, Jones SP (2015) Induction of activating transcription factor 3 limits survival following infarct-induced heart failure in mice. Am J Physiol Heart Circ Physiol 309:H1326–H1335. https://doi.org/10.1152/ajpheart.00513.2015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Brooks AC, Guo Y, Singh M, McCracken J, Xuan YT, Srivastava S, Bolli R, Bhatnagar A (2014) Endoplasmic reticulum stress-dependent activation of ATF3 mediates the late phase of ischemic preconditioning. J Mol Cell Cardiol 76:138–147. https://doi.org/10.1016/j.yjmcc.2014.08.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Cai Y, Zhang C, Nawa T, Aso T, Tanaka M, Oshiro S, Ichijo H, Kitajima S (2000) Homocysteine-responsive ATF3 gene expression in human vascular endothelial cells: activation of c-Jun NH(2)-terminal kinase and promoter response element. Blood 96:2140–2148

    PubMed  CAS  Google Scholar 

  12. Chao HH, Hong HJ, Sung LC, Chen JJ, Cheng TH, Liu JC (2011) Nicorandil attenuates cyclic strain-induced endothelin-1 expression via the induction of activating transcription factor 3 in human umbilical vein endothelial cells. Eur J Pharmacol 667:292–297. https://doi.org/10.1016/j.ejphar.2011.05.062

    Article  PubMed  CAS  Google Scholar 

  13. Chen HH, Wang DL (2004) Nitric oxide inhibits matrix metalloproteinase-2 expression via the induction of activating transcription factor 3 in endothelial cells. Mol Pharmacol 65:1130–1140. https://doi.org/10.1124/mol.65.5.1130

    Article  PubMed  CAS  Google Scholar 

  14. Chen SC, Liu YC, Shyu KG, Wang DL (2008) Acute hypoxia to endothelial cells induces activating transcription factor 3 (ATF3) expression that is mediated via nitric oxide. Atherosclerosis 201:281–288. https://doi.org/10.1016/j.atherosclerosis.2008.02.014

    Article  PubMed  CAS  Google Scholar 

  15. Chen YL, Tsai YT, Lee CY, Lee CH, Chen CY, Liu CM, Chen JJ, Loh SH, Tsai CS (2014) Urotensin II inhibits doxorubicin-induced human umbilical vein endothelial cell death by modulating ATF expression and via the ERK and Akt pathway. PLoS One 9:e106812. https://doi.org/10.1371/journal.pone.0106812

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Clerk A, Cullingford TE, Fuller SJ, Giraldo A, Sugden PH (2009) Endothelin-1 regulation of immediate early gene expression in cardiac myocytes: negative feedback regulation of interleukin 6 by Atf3 and Klf2. Adv Enzyme Regul 49:30–42. https://doi.org/10.1016/j.advenzreg.2008.12.007

    Article  PubMed  CAS  Google Scholar 

  17. De Nardo D, Labzin LI, Kono H, Seki R, Schmidt SV, Beyer M, Xu D, Zimmer S, Lahrmann C, Schildberg FA, Vogelhuber J, Kraut M, Ulas T, Kerksiek A, Krebs W, Bode N, Grebe A, Fitzgerald ML, Hernandez NJ, Williams BR, Knolle P, Kneilling M, Rocken M, Lutjohann D, Wright SD, Schultze JL, Latz E (2014) High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3. Nat Immunol 15:152–160. https://doi.org/10.1038/ni.2784

    Article  PubMed  CAS  Google Scholar 

  18. Dong L, Krewson EA, Yang LV (2017) Acidosis activates endoplasmic reticulum stress pathways through gpr4 in human vascular endothelial cells. Int J Mol Sci. https://doi.org/10.3390/ijms18020278

    Article  PubMed  PubMed Central  Google Scholar 

  19. Eiselein L, Nyunt T, Lame MW, Ng KF, Wilson DW, Rutledge JC, Aung HH (2015) TGRL lipolysis products induce stress protein ATF3 via the TGF-beta receptor pathway in human aortic endothelial cells. PLoS One 10:e0145523. https://doi.org/10.1371/journal.pone.0145523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Ghigo A, Laffargue M, Li M, Hirsch E (2017) PI3K and Calcium Signaling in Cardiovascular Disease. Circ Res 121:282–292. https://doi.org/10.1161/CIRCRESAHA.117.310183

    Article  PubMed  CAS  Google Scholar 

  21. Giraldo A, Barrett OP, Tindall MJ, Fuller SJ, Amirak E, Bhattacharya BS, Sugden PH, Clerk A (2012) Feedback regulation by Atf3 in the endothelin-1-responsive transcriptome of cardiomyocytes: Egr1 is a principal Atf3 target. Biochem J 444:343–355. https://doi.org/10.1042/BJ20120125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Hai T, Curran T (1991) Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc Natl Acad Sci USA 88:3720–3724

    Article  PubMed  CAS  Google Scholar 

  23. Hai T, Hartman MG (2001) The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis. Gene 273:1–11 (S0378-1119(01)00551-0 [pii])

    Article  PubMed  CAS  Google Scholar 

  24. Hai T, Wolfgang CD, Marsee DK, Allen AE, Sivaprasad U (1999) ATF3 and stress responses. Gene Expr 7:321–335

    PubMed  CAS  Google Scholar 

  25. Hai T, Wolford CC, Chang YS (2010) ATF3, a hub of the cellular adaptive-response network, in the pathogenesis of diseases: is modulation of inflammation a unifying component? Gene Expr 15:1–11

    Article  PubMed  CAS  Google Scholar 

  26. Hai TW, Liu F, Coukos WJ, Green MR (1989) Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Genes Dev 3:2083–2090

    Article  PubMed  CAS  Google Scholar 

  27. Hasin T, Elhanani O, Abassi Z, Hai T, Aronheim A (2011) Angiotensin II signaling up-regulates the immediate early transcription factor ATF3 in the left but not the right atrium. Basic Res Cardiol 106:175–187. https://doi.org/10.1007/s00395-010-0145-9

    Article  PubMed  CAS  Google Scholar 

  28. Heusch G (2017) Cardioprotection is alive but remains enigmatic: the nitric oxide-protein kinases-mitochondria signaling axis. Circulation 136:2356–2358. https://doi.org/10.1161/CIRCULATIONAHA.117.031978

    Article  PubMed  CAS  Google Scholar 

  29. Heusch G (2015) Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res 116:674–699. https://doi.org/10.1161/CIRCRESAHA.116.305348

    Article  PubMed  CAS  Google Scholar 

  30. Hsu JC, Laz T, Mohn KL, Taub R (1991) Identification of LRF-1, a leucine-zipper protein that is rapidly and highly induced in regenerating liver. Proc Natl Acad Sci USA 88:3511–3515

    Article  PubMed  CAS  Google Scholar 

  31. Huang L, Zhang SM, Zhang P, Zhang XJ, Zhu LH, Chen K, Gao L, Zhang Y, Kong XJ, Tian S, Zhang XD, Li H (2014) Interferon regulatory factor 7 protects against vascular smooth muscle cell proliferation and neointima formation. J Am Heart Assoc 3:e001309. https://doi.org/10.1161/JAHA.114.001309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Inoue K, Zama T, Kamimoto T, Aoki R, Ikeda Y, Kimura H, Hagiwara M (2004) TNFalpha-induced ATF3 expression is bidirectionally regulated by the JNK and ERK pathways in vascular endothelial cells. Genes Cells 9:59–70 (707 [pii])

    Article  PubMed  CAS  Google Scholar 

  33. Jensen BC, Bultman SJ, Holley D, Tang W, de Ridder G, Pizzo S, Bowles D, Willis MS (2017) Upregulation of autophagy genes and the unfolded protein response in human heart failure. Int J Clin Exp Med 10:1051–1058

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Jiang DS, Liu Y, Zhou H, Zhang Y, Zhang XD, Zhang XF, Chen K, Gao L, Peng J, Gong H, Chen Y, Yang Q, Liu PP, Fan GC, Zou Y, Li H (2014) Interferon regulatory factor 7 functions as a novel negative regulator of pathological cardiac hypertrophy. Hypertension 63:713–722. https://doi.org/10.1161/HYPERTENSIONAHA.113.02653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kalfon R, Koren L, Aviram S, Schwartz O, Hai T, Aronheim A (2017) ATF3 expression in cardiomyocytes preserves homeostasis in the heart and controls peripheral glucose tolerance. Cardiovasc Res 113:134–146. https://doi.org/10.1093/cvr/cvw228

    Article  PubMed  CAS  Google Scholar 

  36. Kawauchi J, Zhang C, Nobori K, Hashimoto Y, Adachi MT, Noda A, Sunamori M, Kitajima S (2002) Transcriptional repressor activating transcription factor 3 protects human umbilical vein endothelial cells from tumor necrosis factor-alpha-induced apoptosis through down-regulation of p53 transcription. J Biol Chem 277:39025–39034. https://doi.org/10.1074/jbc.M202974200

    Article  PubMed  CAS  Google Scholar 

  37. Kehat I, Molkentin JD (2010) Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation 122:2727–2735. https://doi.org/10.1161/CIRCULATIONAHA.110.942268

    Article  PubMed  Google Scholar 

  38. Kim JY, Park KJ, Hwang JY, Kim GH, Lee D, Lee YJ, Song EH, Yoo MG, Kim BJ, Suh YH, Roh GS, Gao B, Kim W, Kim WH (2017) Activating transcription factor 3 is a target molecule linking hepatic steatosis to impaired glucose homeostasis. J Hepatol 67:349–359. https://doi.org/10.1016/j.jhep.2017.03.023

    Article  PubMed  Google Scholar 

  39. Koivisto E, Jurado Acosta A, Moilanen AM, Tokola H, Aro J, Pennanen H, Sakkinen H, Kaikkonen L, Ruskoaho H, Rysa J (2014) Characterization of the regulatory mechanisms of activating transcription factor 3 by hypertrophic stimuli in rat cardiomyocytes. PLoS One 9:e105168. https://doi.org/10.1371/journal.pone.0105168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Koren L, Alishekevitz D, Elhanani O, Nevelsky A, Hai T, Kehat I, Shaked Y, Aronheim A (2015) ATF3-dependent cross-talk between cardiomyocytes and macrophages promotes cardiac maladaptive remodeling. Int J Cardiol 198:232–240. https://doi.org/10.1016/j.ijcard.2015.06.099

    Article  PubMed  CAS  Google Scholar 

  41. Koren L, Barash U, Zohar Y, Karin N, Aronheim A (2017) The cardiac maladaptive ATF3-dependent cross-talk between cardiomyocytes and macrophages is mediated by the IFNgamma-CXCL10-CXCR3 axis. Int J Cardiol 228:394–400. https://doi.org/10.1016/j.ijcard.2016.11.159

    Article  PubMed  CAS  Google Scholar 

  42. Koren L, Elhanani O, Kehat I, Hai T, Aronheim A (2013) Adult cardiac expression of the activating transcription factor 3, ATF3, promotes ventricular hypertrophy. PLoS One 8:e68396. https://doi.org/10.1371/journal.pone.0068396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Kwak BR, Back M, Bochaton-Piallat ML, Caligiuri G, Daemen MJ, Davies PF, Hoefer IE, Holvoet P, Jo H, Krams R, Lehoux S, Monaco C, Steffens S, Virmani R, Weber C, Wentzel JJ, Evans PC (2014) Biomechanical factors in atherosclerosis: mechanisms and clinical implications. Eur Heart J 35(3013–3020):3020a–3020d. https://doi.org/10.1093/eurheartj/ehu353

    Article  CAS  Google Scholar 

  44. Lackland DT, Weber MA (2015) Global burden of cardiovascular disease and stroke: hypertension at the core. Can J Cardiol 31:569–571. https://doi.org/10.1016/j.cjca.2015.01.009

    Article  PubMed  Google Scholar 

  45. Lavie CJ, Arena R, Alpert MA, Milani RV, Ventura HO (2017) Management of cardiovascular diseases in patients with obesity. Nat Rev Cardiol. https://doi.org/10.1038/nrcardio.2017.108

    Article  PubMed  Google Scholar 

  46. Lazzeroni D, Rimoldi O, Camici PG (2016) From left ventricular hypertrophy to dysfunction and failure. Circ J 80:555–564. https://doi.org/10.1253/circj.CJ-16-0062

    Article  PubMed  Google Scholar 

  47. Li Y, Li Z, Zhang C, Li P, Wu Y, Wang C, Bond Lau W, Ma XL, Du J (2017) Cardiac fibroblast-specific activating transcription factor 3 protects against heart failure by suppressing MAP2K3-p38 signaling. Circulation 135:2041–2057. https://doi.org/10.1161/CIRCULATIONAHA.116.024599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Liang G, Wolfgang CD, Chen BP, Chen TH, Hai T (1996) ATF3 gene. Genomic organization, promoter, and regulation. J Biol Chem 271:1695–1701

    Article  PubMed  CAS  Google Scholar 

  49. Lin H, Li HF, Chen HH, Lai PF, Juan SH, Chen JJ, Cheng CF (2014) Activating transcription factor 3 protects against pressure-overload heart failure via the autophagy molecule Beclin-1 pathway. Mol Pharmacol 85:682–691. https://doi.org/10.1124/mol.113.090092

    Article  PubMed  CAS  Google Scholar 

  50. Liu L, Liu J, Huang Z, Yu X, Zhang X, Dou D, Huang Y (2015) Berberine improves endothelial function by inhibiting endoplasmic reticulum stress in the carotid arteries of spontaneously hypertensive rats. Biochem Biophys Res Commun 458:796–801. https://doi.org/10.1016/j.bbrc.2015.02.028

    Article  PubMed  CAS  Google Scholar 

  51. Lu D, Wolfgang CD, Hai T (2006) Activating transcription factor 3, a stress-inducible gene, suppresses Ras-stimulated tumorigenesis. J Biol Chem 281:10473–10481. https://doi.org/10.1074/jbc.M509278200

    Article  PubMed  CAS  Google Scholar 

  52. Luo H, Wang J, Qiao C, Zhang X, Zhang W, Ma N (2015) ATF3 inhibits tenascin-C-induced foam cell formation in LPS-stimulated THP-1 macrophages by suppressing TLR-4. J Atheroscler Thromb 22:1214–1223. https://doi.org/10.5551/jat.28415

    Article  PubMed  CAS  Google Scholar 

  53. Lusis AJ (2000) Atherosclerosis. Nature 407:233–241. https://doi.org/10.1038/35025203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Lv D, Meng D, Zou FF, Fan L, Zhang P, Yu Y, Fang J (2011) Activating transcription factor 3 regulates survivability and migration of vascular smooth muscle cells. IUBMB Life 63:62–69. https://doi.org/10.1002/iub.416

    Article  PubMed  CAS  Google Scholar 

  55. Mancini GB, Cheng AY, Connelly K, Fitchett D, Goldenberg R, Goodman SG, Leiter LA, Lonn E, Paty B, Poirier P, Stone J, Thompson D, Yale JF (2017) Diabetes for cardiologists: practical issues in diagnosis and management. Can J Cardiol 33:366–377 (S0828-282X(16)30734-6)

    Article  PubMed  Google Scholar 

  56. Masuda J, Usui R, Maru Y (2008) Fibronectin type I repeat is a nonactivating ligand for EphA1 and inhibits ATF3-dependent angiogenesis. J Biol Chem 283:13148–13155. https://doi.org/10.1074/jbc.M702164200

    Article  PubMed  CAS  Google Scholar 

  57. Mo P, Wang H, Lu H, Boyd DD, Yan C (2010) MDM2 mediates ubiquitination and degradation of activating transcription factor 3. J Biol Chem 285:26908–26915. https://doi.org/10.1074/jbc.M110.132597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Despres JP, Fullerton HJ, Howard VJ, Huffman MD, Isasi CR, Jimenez MC, Judd SE, Kissela BM, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Magid DJ, McGuire DK, Mohler ER 3rd, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Rosamond W, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Woo D, Yeh RW, Turner MB (2016) Heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation 133:e38–e360. https://doi.org/10.1161/CIR.0000000000000350

    Article  PubMed  Google Scholar 

  59. Nawa T, Nawa MT, Adachi MT, Uchimura I, Shimokawa R, Fujisawa K, Tanaka A, Numano F, Kitajima S (2002) Expression of transcriptional repressor ATF3/LRF1 in human atherosclerosis: colocalization and possible involvement in cell death of vascular endothelial cells. Atherosclerosis 161:281–291 (S0021-9150(01)00639-6)

    Article  PubMed  CAS  Google Scholar 

  60. Nilsson M, Toftgard R, Bohm S (1995) Activated Ha-Ras but not TPA induces transcription through binding sites for activating transcription factor 3/Jun and a novel nuclear factor. J Biol Chem 270:12210–12218

    Article  PubMed  CAS  Google Scholar 

  61. Nobori K, Ito H, Tamamori-Adachi M, Adachi S, Ono Y, Kawauchi J, Kitajima S, Marumo F, Isobe M (2002) ATF3 inhibits doxorubicin-induced apoptosis in cardiac myocytes: a novel cardioprotective role of ATF3. J Mol Cell Cardiol 34:1387–1397 (S0022282802920912)

    Article  PubMed  CAS  Google Scholar 

  62. Nowak WN, Deng J, Ruan XZ, Xu Q (2017) Reactive oxygen species generation and atherosclerosis. Arterioscler Thromb Vasc Biol 37:e41–e52. https://doi.org/10.1161/ATVBAHA.117.309228

    Article  PubMed  CAS  Google Scholar 

  63. Okamoto A, Iwamoto Y, Maru Y (2006) Oxidative stress-responsive transcription factor ATF3 potentially mediates diabetic angiopathy. Mol Cell Biol 26:1087–1097. https://doi.org/10.1128/MCB.26.3.1087-1097.2006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Okamoto Y, Chaves A, Chen J, Kelley R, Jones K, Weed HG, Gardner KL, Gangi L, Yamaguchi M, Klomkleaw W, Nakayama T, Hamlin RL, Carnes C, Altschuld R, Bauer J, Hai T (2001) Transgenic mice with cardiac-specific expression of activating transcription factor 3, a stress-inducible gene, have conduction abnormalities and contractile dysfunction. Am J Pathol 159:639–650. https://doi.org/10.1016/S0002-9440(10)61735-X

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Poulter NR, Prabhakaran D, Caulfield M (2015) Hypertension. Lancet 386:801–812. https://doi.org/10.1016/S0140-6736(14)61468-9

    Article  PubMed  Google Scholar 

  66. Retnakaran R, Zinman B (2008) Type 1 diabetes, hyperglycaemia, and the heart. Lancet 371:1790–1799. https://doi.org/10.1016/S0140-6736(08)60767-9

    Article  PubMed  CAS  Google Scholar 

  67. Russo I, Frangogiannis NG (2016) Diabetes-associated cardiac fibrosis: cellular effectors, molecular mechanisms and therapeutic opportunities. J Mol Cell Cardiol 90:84–93. https://doi.org/10.1016/j.yjmcc.2015.12.011

    Article  PubMed  CAS  Google Scholar 

  68. Sárközy M, Zvara A, Gyemant N, Fekete V, Kocsis GF, Pipis J, Szucs G, Csonka C, Puskas LG, Ferdinandy P, Csont T (2013) Metabolic syndrome influences cardiac gene expression pattern at the transcript level in male ZDF rats. Cardiovasc Diabetol 12:16. https://doi.org/10.1186/1475-2840-12-16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Seshasai SR, Kaptoge S, Thompson A, Di Angelantonio E, Gao P, Sarwar N, Whincup PH, Mukamal KJ, Gillum RF, Holme I, Njolstad I, Fletcher A, Nilsson P, Lewington S, Collins R, Gudnason V, Thompson SG, Sattar N, Selvin E, Hu FB, Danesh J (2011) Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med 364:829–841. https://doi.org/10.1056/NEJMoa1008862

    Article  CAS  Google Scholar 

  70. Shah AM, Mann DL (2011) In search of new therapeutic targets and strategies for heart failure: recent advances in basic science. Lancet 378:704–712. https://doi.org/10.1016/S0140-6736(11)60894-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Shimizu I, Minamino T (2016) Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol 97:245–262. https://doi.org/10.1016/j.yjmcc.2016.06.001

    Article  PubMed  CAS  Google Scholar 

  72. Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, Hadden D, Turner RC, Holman RR (2000) Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 321:405–412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Teasdale JE, Hazell GG, Peachey AM, Sala-Newby GB, Hindmarch CC, McKay TR, Bond M, Newby AC, White SJ (2017) Cigarette smoke extract profoundly suppresses TNFalpha-mediated proinflammatory gene expression through upregulation of ATF3 in human coronary artery endothelial cells. Sci Rep 7:39945. https://doi.org/10.1038/srep39945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Thompson MR, Xu D, Williams BR (2009) ATF3 transcription factor and its emerging roles in immunity and cancer. J Mol Med (Berl) 87:1053–1060. https://doi.org/10.1007/s00109-009-0520-x

    Article  CAS  Google Scholar 

  75. Urmaliya V, Franchelli G (2017) A multidimensional sight on cardiac failure: uncovered from structural to molecular level. Heart Fail Rev 22:357–370. https://doi.org/10.1007/s10741-017-9610-y

    Article  PubMed  Google Scholar 

  76. van Albada ME, Bartelds B, Wijnberg H, Mohaupt S, Dickinson MG, Schoemaker RG, Kooi K, Gerbens F, Berger RM (2010) Gene expression profile in flow-associated pulmonary arterial hypertension with neointimal lesions. Am J Physiol Lung Cell Mol Physiol 298:L483–L491. https://doi.org/10.1152/ajplung.00106.2009

    Article  PubMed  CAS  Google Scholar 

  77. Wang CM, Brennan VC, Gutierrez NM, Wang X, Wang L, Yang WH (2013) SUMOylation of ATF3 alters its transcriptional activity on regulation of TP53 gene. J Cell Biochem 114:589–598. https://doi.org/10.1002/jcb.24396

    Article  PubMed  CAS  Google Scholar 

  78. Wang T, He R, Zhao J, Mei JC, Shao MZ, Pan Y, Zhang J, Wu HS, Yu M, Yan WC, Liu LM, Liu F, Jia WP (2017) Negative pressure wound therapy inhibits inflammation and upregulates activating transcription factor-3 and downregulates nuclear factor-kappaB in diabetic patients with foot ulcerations. Diabetes Metab Res Rev. https://doi.org/10.1002/dmrr.2871

    Article  PubMed  Google Scholar 

  79. Yahiatene I, Aung HH, Wilson DW, Rutledge JC (2014) Single-molecule quantification of lipotoxic expression of activating transcription factor 3. Phys Chem Chem Phys 16:21595–21601. https://doi.org/10.1039/c4cp03260h

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Yin T, Sandhu G, Wolfgang CD, Burrier A, Webb RL, Rigel DF, Hai T, Whelan J (1997) Tissue-specific pattern of stress kinase activation in ischemic/reperfused heart and kidney. J Biol Chem 272:19943–19950

    Article  PubMed  CAS  Google Scholar 

  81. Yu M, Tsai SF, Kuo YM (2017) The therapeutic potential of anti-inflammatory exerkines in the treatment of atherosclerosis. Int J Mol Sci. https://doi.org/10.3390/ijms18061260

    Article  PubMed  PubMed Central  Google Scholar 

  82. Zhang T, Zhao LL, Cao X, Qi LC, Wei GQ, Liu JY, Yan SJ, Liu JG, Li XQ (2014) Bioinformatics analysis of time series gene expression in left ventricle (LV) with acute myocardial infarction (AMI). Gene 543:259–267. https://doi.org/10.1016/j.gene.2014.04.002

    Article  PubMed  CAS  Google Scholar 

  83. Zhang WY, Franco DA, Schwartz E, D’Souza K, Karnick S, Reaven PD (2017) HDL inhibits saturated fatty acid mediated augmentation of innate immune responses in endothelial cells by a novel pathway. Atherosclerosis 259:83–96. https://doi.org/10.1016/j.atherosclerosis.2016.09.003

    Article  PubMed  CAS  Google Scholar 

  84. Zhang ZB, Ruan CC, Chen DR, Zhang K, Yan C, Gao PJ (2016) Activating transcription factor 3 SUMOylation is involved in angiotensin II-induced endothelial cell inflammation and dysfunction. J Mol Cell Cardiol 92:149–157. https://doi.org/10.1016/j.yjmcc.2016.02.001

    Article  PubMed  CAS  Google Scholar 

  85. Zhou H, Bian ZY, Zong J, Deng W, Yan L, Shen DF, Guo H, Dai J, Yuan Y, Zhang R, Lin YF, Hu X, Li H, Tang QZ (2012) Stem cell antigen 1 protects against cardiac hypertrophy and fibrosis after pressure overload. Hypertension 60:802–809. https://doi.org/10.1161/HYPERTENSIONAHA.112.198895

    Article  PubMed  CAS  Google Scholar 

  86. Zhou H, Guo H, Zong J, Dai J, Yuan Y, Bian ZY, Tang QZ (2014) ATF3 regulates multiple targets and may play a dual role in cardiac hypertrophy and injury. Int J Cardiol 174:838–839. https://doi.org/10.1016/j.ijcard.2014.04.160

    Article  PubMed  Google Scholar 

  87. Zhou H, Shen DF, Bian ZY, Zong J, Deng W, Zhang Y, Guo YY, Li H, Tang QZ (2011) Activating transcription factor 3 deficiency promotes cardiac hypertrophy, dysfunction, and fibrosis induced by pressure overload. PLoS One 6:e26744. https://doi.org/10.1371/journal.pone.0026744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Zhou H, Yang HX, Yuan Y, Deng W, Zhang JY, Bian ZY, Zong J, Dai J, Tang QZ (2013) Paeoniflorin attenuates pressure overload-induced cardiac remodeling via inhibition of TGFbeta/Smads and NF-kappaB pathways. J Mol Histol 44:357–367. https://doi.org/10.1007/s10735-013-9491-x

    Article  PubMed  CAS  Google Scholar 

  89. Zhou H, Yuan Y, Ni J, Guo H, Deng W, Bian ZY, Tang QZ (2016) Pleiotropic and puzzling effects of ATF3 in maladaptive cardiac remodeling. Int J Cardiol 206:87–88. https://doi.org/10.1016/j.ijcard.2016.01.143

    Article  PubMed  Google Scholar 

  90. Zhou Y, Zhao L, Zhang Z, Lu X (2015) Protective effect of enalapril against methionine-enriched diet-induced hypertension: role of endoplasmic reticulum and oxidative stress. Biomed Res Int 2015:724876. https://doi.org/10.1155/2015/724876

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81300070, 81770399, 81470516 and 81530012), the Fundamental Research Funds for the Central Universities of China (2042018kf0121), the Development Center for Medical Science and Technology National Health and Family Planning Commission of China (2016ZX-008-01), and the National Major Scientific Instrument and Equipment Development Projects of China (2013YQ03092306).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-Zhu Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Li, N., Yuan, Y. et al. Activating transcription factor 3 in cardiovascular diseases: a potential therapeutic target. Basic Res Cardiol 113, 37 (2018). https://doi.org/10.1007/s00395-018-0698-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-018-0698-6

Keywords

Navigation