Skip to main content

Advertisement

Log in

HRG regulates tumor progression, epithelial to mesenchymal transition and metastasis via platelet-induced signaling in the pre-tumorigenic microenvironment

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Mice lacking histidine-rich glycoprotein (HRG) display an accelerated angiogenic switch and larger tumors—a phenotype caused by enhanced platelet activation in the HRG-deficient mice. Here we show that platelets induce molecular changes in the pre-tumorigenic environment in HRG-deficient mice, promoting cell survival, angiogenesis and epithelial-to-mesenchymal transition (EMT) and that these effects involved signaling via TBK1, Akt2 and PDGFRβ. These early events subsequently translate into an enhanced rate of spontaneous metastasis to distant organs in mice lacking HRG. Later in tumor development characteristic features of pathological angiogenesis, such as decreased perfusion and pericyte coverage, are more pronounced in HRG-deficient mice. At this stage, platelets are essential to support the larger tumor volumes formed in mice lacking HRG by keeping their tumor vasculature sufficiently functional. We conclude that HRG-deficiency promotes tumor progression via enhanced platelet activity and that platelets play a dual role in this process. During early stages of transformation, activated platelets promote tumor cell survival, the angiogenic switch and invasiveness. In the more progressed tumor, platelets support the enhanced pathological angiogenesis and hence increased tumor growth seen in the absence of HRG. Altogether, our findings strengthen the notion of HRG as a potent tumor suppressor, with capacity to attenuate the angiogenic switch, tumor growth, EMT and subsequent metastatic spread, by regulating platelet activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Felding-Habermann B, Habermann R, Saldivar E, Ruggeri ZM (1996) Role of beta3 integrins in melanoma cell adhesion to activated platelets under flow. J Biol Chem 271(10):5892–5900

    Article  PubMed  CAS  Google Scholar 

  2. Jurk K, Kehrel BE (2005) Platelets: physiology and biochemistry. Semin Thromb Hemost 31(4):381–392

    Article  PubMed  CAS  Google Scholar 

  3. Gay LJ, Felding-Habermann B (2011) Contribution of platelets to tumour metastasis. Nat Rev Cancer 11(2):123–134

    Article  PubMed  CAS  Google Scholar 

  4. Lip GY, Chin BS, Blann AD (2002) Cancer and the prothrombotic state. Lancet Oncol 3(1):27–34

    Article  PubMed  CAS  Google Scholar 

  5. Pinedo HM, Verheul HM, D’Amato RJ, Folkman J (1998) Involvement of platelets in tumour angiogenesis? Lancet 352(9142):1775–1777

    Article  PubMed  CAS  Google Scholar 

  6. Pipili-Synetos E, Papadimitriou E, Maragoudakis ME (1998) Evidence that platelets promote tube formation by endothelial cells on matrigel. Br J Pharmacol 125(6):1252–1257

    Article  PubMed  CAS  Google Scholar 

  7. Verheul HM, Jorna AS, Hoekman K, Broxterman HJ, Gebbink MF, Pinedo HM (2000) Vascular endothelial growth factor-stimulated endothelial cells promote adhesion and activation of platelets. Blood 96(13):4216–4221

    PubMed  CAS  Google Scholar 

  8. Brill A, Elinav H, Varon D (2004) Differential role of platelet granular mediators in angiogenesis. Cardiovasc Res 63(2):226–235

    Article  PubMed  CAS  Google Scholar 

  9. Rhee JS, Black M, Schubert U, Fischer S, Morgenstern E, Hammes HP, Preissner KT (2004) The functional role of blood platelet components in angiogenesis. Thromb Haemost 92(2):394–402

    PubMed  CAS  Google Scholar 

  10. Chiodoni C, Iezzi M, Guiducci C, Sangaletti S, Alessandrini I, Ratti C, Tiboni F, Musiani P, Granger DN, Colombo MP (2006) Triggering CD40 on endothelial cells contributes to tumor growth. J Exp Med 203(11):2441–2450

    Article  PubMed  CAS  Google Scholar 

  11. Kisucka J, Butterfield CE, Duda DG, Eichenberger SC, Saffaripour S, Ware J, Ruggeri ZM, Jain RK, Folkman J, Wagner DD (2006) Platelets and platelet adhesion support angiogenesis while preventing excessive hemorrhage. Proc Natl Acad Sci USA 103(4):855–860

    Article  PubMed  CAS  Google Scholar 

  12. Ringvall M, Thulin A, Zhang L, Cedervall J, Tsuchida-Straeten N, Jahnen-Dechent W, Siegbahn A, Olsson AK (2011) Enhanced platelet activation mediates the accelerated angiogenic switch in mice lacking histidine-rich glycoprotein. PLoS ONE 6(1):e14526

    Article  PubMed  CAS  Google Scholar 

  13. Verheul HM, Hoekman K, Luykx-de Bakker S, Eekman CA, Folman CC, Broxterman HJ, Pinedo HM (1997) Platelet: transporter of vascular endothelial growth factor. Clin Cancer Res 3(12 Pt 1):2187–2190

    PubMed  CAS  Google Scholar 

  14. Italiano JE Jr, Richardson JL, Patel-Hett S, Battinelli E, Zaslavsky A, Short S, Ryeom S, Folkman J, Klement GL (2008) Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood 111(3):1227–1233

    Article  PubMed  CAS  Google Scholar 

  15. Cedervall J, Olsson A-K (2012) Platelet regulation of angiogenesis, tumor growth and metastasis. In: Ran S (ed) Tumor angiogenesis. In Tech, ISBN 978-953-307-878-6, pp 115–134

  16. Labelle M, Begum S, Hynes RO (2011) Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 20(5):576–590

    Article  PubMed  CAS  Google Scholar 

  17. Browder T, Folkman J, Pirie-Shepherd S (2000) The hemostatic system as a regulator of angiogenesis. J Biol Chem 275(3):1521–1524

    Article  PubMed  CAS  Google Scholar 

  18. Staton CA, Lewis CE (2005) Angiogenesis inhibitors found within the haemostasis pathway. J Cell Mol Med 9(2):286–302

    Article  PubMed  CAS  Google Scholar 

  19. Poon IK, Patel KK, Davis DS, Parish CR, Hulett MD (2011) Histidine-rich glycoprotein: the Swiss Army knife of mammalian plasma. Blood 117(7):2093–2101

    Article  PubMed  CAS  Google Scholar 

  20. Hulett MD, Parish CR (2000) Murine histidine-rich glycoprotein: cloning, characterization and cellular origin. Immunol Cell Biol 78(3):280–287

    Article  PubMed  CAS  Google Scholar 

  21. Lerch PG, Nydegger UE, Kuyas C, Haeberli A (1988) Histidine-rich glycoprotein binding to activated human platelets. Br J Haematol 70(2):219–224

    Article  PubMed  CAS  Google Scholar 

  22. Horne MK 3rd, Merryman PK, Cullinane AM (2001) Histidine-proline-rich glycoprotein binding to platelets mediated by transition metals. Thromb Haemost 85(5):890–895

    PubMed  CAS  Google Scholar 

  23. Tsuchida-Straeten N, Ensslen S, Schafer C, Woltje M, Denecke B, Moser M, Graber S, Wakabayashi S, Koide T, Jahnen-Dechent W (2005) Enhanced blood coagulation and fibrinolysis in mice lacking histidine-rich glycoprotein (HRG). J Thromb Haemost 3(5):865–872

    Article  PubMed  CAS  Google Scholar 

  24. Thulin A, Ringvall M, Dimberg A, Karehed K, Vaisanen T, Vaisanen MR, Hamad O, Wang J, Bjerkvig R, Nilsson B, Pihlajaniemi T, Akerud H, Pietras K, Jahnen-Dechent W, Siegbahn A, Olsson AK (2009) Activated platelets provide a functional microenvironment for the antiangiogenic fragment of histidine-rich glycoprotein. Mol Cancer Res 7(11):1792–1802

    Article  PubMed  CAS  Google Scholar 

  25. Workman P, Balmain A, Hickman JA, McNally NJ, Rohas AM, Mitchison NA, Pierrepoint CG, Raymond R, Rowlatt C, Stephens TC et al (1988) UKCCCR guidelines for the welfare of animals in experimental neoplasia. Lab Anim 22(3):195–201

    Article  PubMed  CAS  Google Scholar 

  26. Persson C, Savenhed C, Bourdeau A, Tremblay ML, Markova B, Bohmer FD, Haj FG, Neel BG, Elson A, Heldin CH, Ronnstrand L, Ostman A, Hellberg C (2004) Site-selective regulation of platelet-derived growth factor beta receptor tyrosine phosphorylation by T-cell protein tyrosine phosphatase. Mol Cell Biol 24(5):2190–2201

    Article  PubMed  CAS  Google Scholar 

  27. Korherr C, Gille H, Schafer R, Koenig-Hoffmann K, Dixelius J, Egland KA, Pastan I, Brinkmann U (2006) Identification of proangiogenic genes and pathways by high-throughput functional genomics: TBK1 and the IRF3 pathway. Proc Natl Acad Sci USA 103(11):4240–4245

    Google Scholar 

  28. Czabanka M, Korherr C, Brinkmann U, Vajkoczy P (2008) Influence of TBK-1 on tumor angiogenesis and microvascular inflammation. Front Biosci 13:7243–7249

    Article  PubMed  CAS  Google Scholar 

  29. Ou YH, Torres M, Ram R, Formstecher E, Roland C, Cheng T, Brekken R, Wurz R, Tasker A, Polverino T, Tan SL, White MA (2011) TBK1 directly engages Akt/PKB survival signaling to support oncogenic transformation. Mol Cell 41(4):458–470

    Article  PubMed  CAS  Google Scholar 

  30. Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, Schinzel AC, Sandy P, Meylan E, Scholl C, Frohling S, Chan EM, Sos ML, Michel K, Mermel C, Silver SJ, Weir BA, Reiling JH, Sheng Q, Gupta PB, Wadlow RC, Le H, Hoersch S, Wittner BS, Ramaswamy S, Livingston DM, Sabatini DM, Meyerson M, Thomas RK, Lander ES, Mesirov JP, Root DE, Gilliland DG, Jacks T, Hahn WC (2009) Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462(7269):108–112

    Article  PubMed  CAS  Google Scholar 

  31. Villagrasa P, Diaz VM, Vinas-Castells R, Peiro S, Del Valle-Perez B, Dave N, Rodriguez-Asiain A, Casal JI, Lizcano JM, Dunach M, Garcia de Herreros A (2012) Akt2 interacts with Snail1 in the E-cadherin promoter. Oncogene 31(36):4022–4033

    Article  PubMed  CAS  Google Scholar 

  32. Cheng GZ, Chan J, Wang Q, Zhang W, Sun CD, Wang LH (2007) Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Res 67(5):1979–1987

    Article  PubMed  CAS  Google Scholar 

  33. Chau NM, Ashcroft M (2004) Akt2: a role in breast cancer metastasis. Breast Cancer Res 6(1):55–57

    Article  PubMed  CAS  Google Scholar 

  34. Arboleda MJ, Lyons JF, Kabbinavar FF, Bray MR, Snow BE, Ayala R, Danino M, Karlan BY, Slamon DJ (2003) Overexpression of AKT2/protein kinase Bbeta leads to up-regulation of beta1 integrins, increased invasion, and metastasis of human breast and ovarian cancer cells. Cancer Res 63(1):196–206

    PubMed  CAS  Google Scholar 

  35. Pietras K, Sjoblom T, Rubin K, Heldin CH, Ostman A (2003) PDGF receptors as cancer drug targets. Cancer Cell 3(5):439–443

    Article  PubMed  CAS  Google Scholar 

  36. Lindahl P, Johansson BR, Leveen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277(5323):242–245

    Article  PubMed  CAS  Google Scholar 

  37. Lindblom P, Gerhardt H, Liebner S, Abramsson A, Enge M, Hellstrom M, Backstrom G, Fredriksson S, Landegren U, Nystrom HC, Bergstrom G, Dejana E, Ostman A, Lindahl P, Betsholtz C (2003) Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev 17(15):1835–1840

    Article  PubMed  CAS  Google Scholar 

  38. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L (2006) VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol 7(5):359–371

    Article  PubMed  CAS  Google Scholar 

  39. Gotzmann J, Mikula M, Eger A, Schulte-Hermann R, Foisner R, Beug H, Mikulits W (2004) Molecular aspects of epithelial cell plasticity: implications for local tumor invasion and metastasis. Mutat Res 566(1):9–20

    Article  PubMed  CAS  Google Scholar 

  40. Jechlinger M, Sommer A, Moriggl R, Seither P, Kraut N, Capodiecci P, Donovan M, Cordon-Cardo C, Beug H, Grunert S (2006) Autocrine PDGFR signaling promotes mammary cancer metastasis. J Clin Invest 116(6):1561–1570

    Article  PubMed  CAS  Google Scholar 

  41. Gotzmann J, Fischer AN, Zojer M, Mikula M, Proell V, Huber H, Jechlinger M, Waerner T, Weith A, Beug H, Mikulits W (2006) A crucial function of PDGF in TGF-beta-mediated cancer progression of hepatocytes. Oncogene 25(22):3170–3185

    Article  PubMed  CAS  Google Scholar 

  42. Perl AK, Wilgenbus P, Dahl U, Semb H, Christofori G (1998) A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 392(6672):190–193

    Article  PubMed  CAS  Google Scholar 

  43. Pomerantz JL, Baltimore D (1999) NF-kappaB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. EMBO J 18(23):6694–6704

    Article  PubMed  CAS  Google Scholar 

  44. Smith CL, Baek ST, Sung CY, Tallquist MD (2011) Epicardial-derived cell epithelial-to-mesenchymal transition and fate specification require PDGF receptor signaling. Circ Res 108(12):e15–e26

    Article  PubMed  CAS  Google Scholar 

  45. Chen H, Gu X, Liu Y, Wang J, Wirt SE, Bottino R, Schorle H, Sage J, Kim SK (2011) PDGF signalling controls age-dependent proliferation in pancreatic beta-cells. Nature 478(7369):349–355

    Article  PubMed  CAS  Google Scholar 

  46. Tugues S, Honjo S, Konig C, Noguer O, Hedlund M, Botling J, Deschoemaeker S, Wenes M, Rolny C, Jahnen-Dechent W, Mazzone M, Claesson-Welsh L (2012) Genetic deficiency in plasma protein HRG enhances tumor growth and metastasis by exacerbating immune escape and vessel abnormalization. Cancer Res 72(8):1953–1963

    Article  PubMed  CAS  Google Scholar 

  47. Rolny C, Mazzone M, Tugues S, Laoui D, Johansson I, Coulon C, Squadrito ML, Segura I, Li X, Knevels E, Costa S, Vinckier S, Dresselaer T, Akerud P, De Mol M, Salomaki H, Phillipson M, Wyns S, Larsson E, Buysschaert I, Botling J, Himmelreich U, Van Ginderachter JA, De Palma M, Dewerchin M, Claesson-Welsh L, Carmeliet P (2011) HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell 19(1):31–44

    Article  PubMed  CAS  Google Scholar 

  48. Scull CM, Hays WD, Fischer TH (2010) Macrophage pro-inflammatory cytokine secretion is enhanced following interaction with autologous platelets. J Inflamm (Lond) 7:53

    Article  Google Scholar 

  49. Ho-Tin-Noe B, Goerge T, Wagner DD (2009) Platelets: guardians of tumor vasculature. Cancer Res 69(14):5623–5626

    Article  PubMed  CAS  Google Scholar 

  50. Macquarrie JL, Stafford AR, Yau JW, Leslie BA, Vu TT, Fredenburgh JC, Weitz JI (2011) Histidine-rich glycoprotein binds factor XIIa with high affinity and inhibits contact-initiated coagulation. Blood 117(15):4134–4141

    Article  PubMed  CAS  Google Scholar 

  51. Vu TT, Stafford AR, Leslie BA, Kim PY, Fredenburgh JC, Weitz JI (2011) Histidine-rich glycoprotein binds fibrin(ogen) with high affinity and competes with thrombin for binding to the gamma’-chain. J Biol Chem 286(35):30314–30323

    Article  PubMed  CAS  Google Scholar 

  52. Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D (1999) Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284(5415):808–812

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Kristian Pietras and Sara Cunha, Karolinska Institute, for their valuable help in setting up the RIP1-Tag2 tumor model. We also thank Lars Hellman, Uppsala University for help with Fig. 7. This study was supported by the Swedish Cancer Society #11 0653 and The Swedish Research Council #2010-6903-75363-44 to AKO and #K2012-77PK-22157-01-2 to JC.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The experiments comply with current Swedish laws.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna-Karin Olsson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 513 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cedervall, J., Zhang, Y., Ringvall, M. et al. HRG regulates tumor progression, epithelial to mesenchymal transition and metastasis via platelet-induced signaling in the pre-tumorigenic microenvironment. Angiogenesis 16, 889–902 (2013). https://doi.org/10.1007/s10456-013-9363-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-013-9363-8

Keywords

Navigation