Skip to main content
Log in

Inhibition of hemangioma development in a syngeneic mouse model correlates with bcl-2 suppression and the inhibition of Akt kinase activity

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Background

Hemangiomas are benign vascular tumors that are characterised by excessive angiogenesis. While there is no definitive treatment for these tumors, several angiogenesis inhibitors, including bleomycin, have been employed. To better understand the mechanism of bleomycin in accelerating haemangioma regression, we investigated the effects of the drug on hemangiomagenesis using a previously described mouse hemangioma model.

Materials and methods

The effects of bleomycin were tested in mice injected with endothelioma cells to induce hemangioma development. At termination, tissue samples from bleomycin-treated and control mice were stained with hematoxylin and eosin for histological examination. Bcl-2, flk-1 and vWF expression were studied by immunofluorescence microscopy. Hematological analysis was undertaken using a hemocounter. Akt activity was analyzed in tissue homogenates and endothelioma cells using ELISA. Also, caspase activity was analysed in endothelioma cells by ELISA.

Results

Bleomycin inhibited tumor growth in vivo in a dose-dependant manner. Our findings also revealed that bleomycin inhibited Akt activation and suppressed bcl-2. In vitro bleomycin increased caspase activation.

Conclusion

Our observations reveal possible mechanisms for the inhibitory effects of bleomycin on hemangiomagenesis, and raise the possibility that bcl-2 might be an important therapeutic target in the treatment of hemangiomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mulliken JB, Glowacki J (1982) Hemangiomas and vascular malformations in infants and children: a classification based on endothelial characteristics. Plast Reconstruct Surg 69:412–422

    Article  CAS  Google Scholar 

  2. Bruckner AL, Frieden IJ (2003) Hemangiomas of infancy. J Am Acad Dermatol 48:477–493

    Article  PubMed  Google Scholar 

  3. Bauland CG, van Steensel MA, Steijlen PM, Rieu PN, Spauwen PH (2006) The pathogenesis of hemangiomas: a review. Plast Reconstruct Surg 117:29e–35e

    Article  Google Scholar 

  4. Blei F (2005) Basic science and clinical aspects of vascular anomalies. Curr Opin Pediatr 17:501–509

    Article  PubMed  Google Scholar 

  5. Takahashi K, Mulliken JB, Kozakewich HP, Rogers RA, Folkman J, Ezekowitz RA (1994) Cellular markers that distinguish the phases of hemangioma during infancy and childhood. J Clin Invest 93:2357–2364

    Article  PubMed  CAS  Google Scholar 

  6. Zhang G, Yi C, Li X, Liang Z, Wang R, Liu D et al (2008) Proliferation hemangiomas formation through dual mechanism of vascular endothelial growth factor mediated endothelial progenitor cells proliferation and mobilization through matrix metalloproteinases 9. Med Hypotheses 70:815–818

    Article  PubMed  CAS  Google Scholar 

  7. Enjolras O, Mulliken JB (1993) The current management of vascular birthmarks. Pediatr Dermatol 10:311–313

    Article  PubMed  CAS  Google Scholar 

  8. Barlow CF, Priebe CJ, Mulliken JB, Barnes PD, Mac Donald D, Folkman J et al (1998) Spastic diplegia as a complication of interferon Alfa-2a treatment of hemangiomas of infancy. J Pediatr 132:527–530

    Article  PubMed  CAS  Google Scholar 

  9. Grimal I, Duveau E, Enjolras O, Verret JL, Ginies JL (2000) Effectiveness and dangers of interferon-alpha in the treatment of severe hemangiomas in infants. Arch Pediatrie 7:163–167

    Article  CAS  Google Scholar 

  10. Enjolras O, Brevière GM, Roger G, Tovi M, Pellegrino B, Varotti E et al (2004) Traitement par vincristine des hémangiomes graves du nourrisson. Arch Pédiatrie 11:99–107

    Article  CAS  Google Scholar 

  11. Zvulonov A, Metzer A (2002) Hemangiomas and vascular malformations: unapproved treatments. Clin Dermatol 20:660–667

    Article  Google Scholar 

  12. Sarihan H, Mocan H, Yildiz K, Abes M, Akyazici R (1997) A new treatment with bleomycin for complicated cutaneous hemangioma in children. Eur J Pediatr Surg 7:158–162

    Article  PubMed  CAS  Google Scholar 

  13. Kullendorff CM (1997) Efficacy of bleomycin treatment for symptomatic hemangiomas in children. Pediatr Surg Int 12:526–528

    Article  PubMed  CAS  Google Scholar 

  14. Muir T, Kirsten M, Fourie P et al (2004) Intralesional bleomycin injection (IBI) for hemangiomas and congenital vascular malformations. J Pediatr Surg 39:1735–1736

    Article  Google Scholar 

  15. Pienaar C, Graham R, Geldenhuys S, Hudson DA (2006) Intralesional bleomycin for the treatment of hemangiomas. Plast Reconstr Surg 117:221–226

    Article  PubMed  CAS  Google Scholar 

  16. Mabeta P, Davis PF (2008) The mechanism of bleomycin in inducing hemangioma regression. S Afr Med J 98:538–539

    PubMed  CAS  Google Scholar 

  17. Mabeta P, Pepper MS (2009) A comparative study on the anti-angiogenic effects of DNA damaging and cytoskeletal-disrupting agents. Angiogenesis 12:81–90

    Article  PubMed  CAS  Google Scholar 

  18. Liekens S, Verbeken E, Vandeputte M, De Clercq E, Neyts J (1999) A novel animal model for hemangiomas: inhibition of hemangioma development by the angiogenesis inhibitor TNP-470. Cancer Res 59:2376–2383

    PubMed  CAS  Google Scholar 

  19. Bautch VL, Toda S, Hassell JA et al (1987) Endothelial cell tumors develop in transgenic mice carrying polyoma virus middle T oncogene. Cell 51:529–538

    Article  PubMed  CAS  Google Scholar 

  20. Sabapathy KT, Pepper MS, Kiefer F et al (1997) Polyoma middle T-induced vascular tumor formation: the role of the plasminogen activator/plasmin system. J Cell Biol 137:953–963

    Article  PubMed  CAS  Google Scholar 

  21. Dubois-Stringfellw NK, Olpack-Martindale L, Bautch VL, Azizkhan RG (1994) Mice with hemangiomas induced by transgenic endothelial cells. Am J Pathol 144:796–806

    Google Scholar 

  22. Pepper MS, Tacchini-Cottier F, Sabapathy TK et al (1997) Tumor angiogenesis. Endothelial cells transformed by polyoma virus middle T oncogene: a model for hemangiomas and other vascular tumors. In: Bicknell R, Lewis CE, Ferrara N (eds) Tumor angiogenesis. Oxford University Press, Oxford, pp 309–331

    Google Scholar 

  23. Kiefer M, Courtneidge SA, Wagner EF (1994) Oncogenic properties of the middle T antigens of polyoma viruses. Adv Cancer Res 64:125–157

    Article  PubMed  CAS  Google Scholar 

  24. Kaplan DR, Pallas DC, Morgan W et al (1989) Mechanisms of transformation by polyoma virus middle T antigen. Biochim Biophys Acta 948:345–364

    PubMed  CAS  Google Scholar 

  25. Dubois NA, Kolpack LC, Wang R et al (1991) Isolation and characterization of an established endothelial cell line from transgenic mouse hemangiomas. Exp Cell Res 196:302–313

    Article  PubMed  CAS  Google Scholar 

  26. Taraboletti G, Belotti D, Dejana E, Mantovani A, Giavazzi R (1993) Endothelial cell migration and invasiveness are induced by a soluble factor produced by murine endothelioma cells transformed by polyoma virus middle T oncogene. Cancer Res 53:3812–3816

    PubMed  CAS  Google Scholar 

  27. Mabeta P, Pepper MS (2011) Hemangiomas—current therapeutic strategies. Int J Dev Biol 55:431–437

    Article  PubMed  CAS  Google Scholar 

  28. Williams RL, Risau W, Zerwes H-G et al (1989) Endothelioma cells expressing the polyoma middle T oncogene induce hemangiomas by host cell recruitment. Cell 57:1053–1063

    Article  PubMed  CAS  Google Scholar 

  29. Cheng J, Slavin RE, Gallagher JA, Zhu G, Biehl TR, Swanstrom LL, Hansen PD (2004) Expression of vascular endothelial growth factor and receptor flk-1 in colon cancer liver metastases. J Hepato-biliary Pan 11:164–170

    Google Scholar 

  30. Perrone G, Vincenzi B, Santini D, Verzı A, Tonini G, Vetrani A, Rabitti C (2004) Correlation of p53 and bcl-2 expression with vascular endothelial growth factor (VEGF), microvessel density (MVD) and clinico-pathological features in colon cancer. Cancer Lett 208:227–234

    Article  PubMed  CAS  Google Scholar 

  31. Kumar P, Ning Y, Polverini PJ (2008) Endothelial cells expressing Bcl-2 promote tumor metastasis by enhancing tumor angiogenesis, blood vessel leakiness and tumor invasion. Lab Invest 88:740–749

    Article  PubMed  CAS  Google Scholar 

  32. Maillux A, Grenet K, Bruneel A, Beneteau-Burnat B, Vaubourdolle M, Baudin B (2001) Anticancer drugs induce necrosis of human endothelial cells involving both oncosis and apoptosis. Eur J Cell Biol 80:442–449

    Article  Google Scholar 

  33. Fontanini G, Boldrini L, Vignati S, Chinè S, Basolo F, Silvestri V, Lucchi M, Mussi A, Angeletti CA, Bevilacqua G (1998) Bcl2 and p53 regulate vascular endothelial growth factor (VEGF)-mediated angiogenesis in non-small cell lung carcinoma. Eur J Cancer 34:718–723

    Article  PubMed  CAS  Google Scholar 

  34. Burlacu A (2003) Regulation of apoptosis by Bcl-2 family proteins. J Cell Mol Med 7:249–257

    Article  PubMed  CAS  Google Scholar 

  35. Tezel G, Wax MB (1999) Inhibition of caspase activity in retinal cell apoptosis induced by various stimuli in vitro. Invest Ophthalmol Vis Sci 40:2660–2667

    PubMed  CAS  Google Scholar 

  36. Dawson S-J, Makretsov N, Blows FM et al (2010) BCL2 in breast cancer: a favorable prognostic marker across molecular subtypes and independent of adjuvant therapy. Br J Cancer 103:668–675

    Article  PubMed  CAS  Google Scholar 

  37. Ferenc P, Solár P, Kleban J, Mikeš J, Fedoročko P (2010) Down-regulation of Bcl-2 and Akt induced by combination of photoactivated hypericin and genistein in human breast cancer cells. J Photoch Photobio B 98:25–34

    Article  CAS  Google Scholar 

  38. Moon D-O, Park S-Y, Choi Y-H, Kim ND, Chan Lee C, Kim G-Y (2008) Melittin induces Bcl-2 and caspase-3-dependent apoptosis through downregulation of Akt phosphorylation in human leukemic U937 cells. Toxicon 51:112–120

    Article  PubMed  CAS  Google Scholar 

  39. Li B, Xu W, Luo C, Gozal D, Liu R (2003) VEGF-induced activation of the PI3-K/Akt pathway reduces mutant SOD1-mediated motor neuron cell death. Mol Brain Res 111:155–164

    Article  PubMed  CAS  Google Scholar 

  40. Zhao J, Miao J, Zhao B, Zhang S, Yin D (2006) Suppressing Akt phosphorylation and activating Fas by safrole oxide inhibited angiogenesis and induced vascular endothelial cell apoptosis in the presence of fibroblast growth factor-2 and serum. Int J Biochem Cell Biol 38:1603–1613

    Article  PubMed  CAS  Google Scholar 

  41. Enjolras O, Wassef M, Mazoyer E et al (1997) Infants with Kasabach-Merritt syndrome do not have ‘true’ hemangiomas. J Pediatr 130:631–640

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr Ben Loos (Department of Physiological Sciences, Stellenbosch University) for his assistance with fluorescence microscopy and Prof Piet Bekker (Biostats Unit, Medical Research Foundation) for his assistance with statistical analysis. This study was supported by the National Research Foundation, the Medical Research Council and the University of Pretoria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peace Mabeta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mabeta, P., Pepper, M.S. Inhibition of hemangioma development in a syngeneic mouse model correlates with bcl-2 suppression and the inhibition of Akt kinase activity. Angiogenesis 15, 131–139 (2012). https://doi.org/10.1007/s10456-011-9248-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-011-9248-7

Keywords

Navigation