Skip to main content
Log in

SR16388: a steroidal antiangiogenic agent with potent inhibitory effect on tumor growth in vivo

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Angiogenesis is one of the major processes controlling growth and metastasis of tumors. Angiogenesis inhibitors have been targeted for the treatment of various cancers for more than 2 decades. We have developed a novel class of steroidal compounds aimed at blocking the angiogenic process in cancerous tissues. Our lead compound, SR16388, is a potent antiangiogenic agent with binding affinity to estrogen receptor-α (ER-α) and -β (ER-β) at the nanomolar range. This compound inhibited the proliferation of human microvascular endothelial cells (HMVEC) and various types of human cancer cells in vitro. SR16388 inhibited embryonic angiogenesis as measured in the chick chorioallantoic membrane (CAM) assay. The blood vessel density in the CAM was greatly reduced after the embryos were treated with 3 μg/CAM of SR16388 for 24 h. SR16388 at a dose of 2 μM prevented tube formation in Matrigel after HMVEC cells were treated for 8 h. In a modified Boyden chamber assay, SR16388 inhibited the migration of HMVECs by 80% at 500 nM. Using a novel in vivo Fibrin Z-chamber model, we demonstrated that SR16388 at a single daily oral dose of 3 mg/kg for 12 days significantly inhibited the granulation tissue (GT) thickness and the microvessel density of the GT as compared to control. More importantly, SR16388 down-regulated the pro-angiogenic transcription factors, hypoxia inducible factor 1α (HIF-1α) and signal transducer and activator of transcription 3 (STAT3) in non-small cell lung cancer (NSCLC) cells. Together, these effects of SR16388 can lead to the reduction of vascularization and tumor growth in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31

    Article  CAS  PubMed  Google Scholar 

  2. Folkman J, Shing Y (1992) Angiogenesis. J Bio Chem 267:10931–10934

    CAS  Google Scholar 

  3. Folkman J, Kalluri R (2004) Cancer without disease. Nature 427:787

    Article  CAS  PubMed  Google Scholar 

  4. Yancopoulos GD, Davis S, Gale NW et al (2000) Vascular-specific growth factors and blood vessel formation. Nature 407:242–248

    Article  CAS  PubMed  Google Scholar 

  5. Rosen LS (2005) VEGF-targeted therapy: therapeutic potential and recent advances. Oncologist 10:382–391

    Article  CAS  PubMed  Google Scholar 

  6. Ferrara N, Hillan KJ, Novotny W (2005) Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun 333:328–335

    Article  CAS  PubMed  Google Scholar 

  7. Takahashi Y, Kitadai Y, Bucana CD et al (1995) Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon Cancer. Cancer Res 55:3964–3968

    CAS  PubMed  Google Scholar 

  8. Boocock CA, Charnock-Jones DS, Sharkey AM et al (1995) Expression of vascular endothelial growth factor and its receptor flt and KDR in ovarian carcinoma. J Natl Cancer Inst 87(7):506–516

    Article  CAS  PubMed  Google Scholar 

  9. Zeng G, Taylor SM, McColm JR et al (2007) Orientation of endothelial cell division is regulated by VEGF signaling during blood vessel formation. Blood 109:1345–1352

    Article  CAS  PubMed  Google Scholar 

  10. Kliche S, Waltenberger J (2001) VEGF receptor signaling and endothelial function. IUBMB Life 52:61–66

    Article  CAS  PubMed  Google Scholar 

  11. Claesson-Welch L (2003) Signal transduction by vascular endothelial growth factor receptors. Biochem Soc Trans 31:20–24

    Article  Google Scholar 

  12. Shojaei F, Ferrara N (2007) Antiangiogensis to treat cancer and intraocular neovascular disorders. Lab Invest 87:227–230

    Article  CAS  PubMed  Google Scholar 

  13. Folkman J, Kalluri R (2003) Tumor angiogenesis. In: Kufe DW, Pollock RE, Weichselbaum RR et al (eds) Cancer medicine. B.C. Decker Inc., Hamilton, pp 161–194

  14. Satchi-Fainaro R, Mamluk R, Wang L et al (2005) Inhibition of vessel permeability by TNP-470 and its polymer conjugate, caplostatin. Cancer Cell 7:251–261

    Article  CAS  PubMed  Google Scholar 

  15. Huang ZH, Fan YF, Xia H et al (2003) Effects of TNP-470 on proliferation and apoptosis in human colon cancer xenografts in nude mice. World J Gastroenterol 9(2):281–283

    CAS  PubMed  Google Scholar 

  16. Huang JH, Fischer JS, New T et al (2004) TNP-470 promotes initial vascular sprouting in xenograft tumors. Mol Cancer Ther 3(3):335–343

    CAS  PubMed  Google Scholar 

  17. Benny O, Fainaru O, Adini A et al (2008) An orally delivered small-molecule formulation with antiangiogenic and anticancer activity. Nat Biotechnol 26(7):799–807

    Article  CAS  PubMed  Google Scholar 

  18. Hockel M, Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93(4):266–276

    Article  CAS  PubMed  Google Scholar 

  19. Jung JE, Kim HS, Lee CS et al (2007) Caffeic acid and its synthetic derivative CADPE suppress tumor angiogenesis by blocking STAT3-mediated VEGF expression in human renal carcinoma cells. Carcinogenesis 28(8):1780–1787

    Article  CAS  PubMed  Google Scholar 

  20. Semenza GL (2009) Regulation of cancer cell metabolism by hypoxia-induced factor-1. Semin Cancer Biol 19:12–16

    Article  CAS  PubMed  Google Scholar 

  21. Semenza GL (2007) Vasculogenesis, angiogenesis, and arteriogenesis: mechanisms of blood vessel formation and remodeling. J Cell Biochem 102:840–847

    Article  CAS  PubMed  Google Scholar 

  22. Simiantonaki N, Jayasinghe C, Michel-Schmidt R et al (2008) Hypoxia-induced epithelial VEGFD-C/VEGFR-3 upregulation in carcinoma cell lines. Int J Oncol 32:585–592

    CAS  PubMed  Google Scholar 

  23. Byrne AM, Bouchier-Hayes DJ, Harmey JH (2005) Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J Cell Mol Med 9(4):777–794

    Article  CAS  PubMed  Google Scholar 

  24. Niu G, Briggs J, Deng J et al (2008) Signal transducer and activator of transcription 3 is required for hypoxia-inducible factor-1α RNA expression in both tumor cells and tumor-associated myeloid cells. Mol Cancer Res 6(7):1099–1105

    Article  CAS  PubMed  Google Scholar 

  25. Kimbro KS, Simons JW (2006) Hypoxia-inducible factor-1 in human breast and prostate cancer. Endocr Relat Cancer 13:739–749

    Article  CAS  PubMed  Google Scholar 

  26. LaVallee TM, Burke PA, Swartz GM et al (2008) Significant antitumor activity in vivo following treatment with the microtubule agent ENMD-1198. Mol Cancer Ther 7(6):1472–1482

    Article  CAS  PubMed  Google Scholar 

  27. Moser C, Lang SA, Mori A et al (2008) ENMD-1198, a novel tubulin-binding agent reduces HIF-1 alpha and STAT3 activity in human hepatocellular carcinoma (HCC) cells, and inhibits growth and vascularization in vivo. BMC Cancer 8:206

    Article  PubMed  Google Scholar 

  28. Siddiquee KAZ, Turkson J (2008) STAT3 as a target for inducing apoptosis in solid and haematological tumors. Cell Res 18:254–267

    Article  Google Scholar 

  29. Brantley EC, Nabors LB, Gillespie GY et al (2008) Loss of protein inhibitors of activated STAT3 expression in glioblatoma multiform tumors: implications for STAT3 activation and gene expression. Clin Cancer Res 14:4694–4704

    Article  CAS  PubMed  Google Scholar 

  30. Niu G, Wright KL, Huang M et al (2002) Constitutive STAT3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 21:2000–2008

    Article  CAS  PubMed  Google Scholar 

  31. Chen Z, Han ZC (2008) STAT3: a critical transcription activator in angiogenesis. Med Res Rev 28(2):185–200

    Article  CAS  PubMed  Google Scholar 

  32. Schaefer LK, Ren Z, Fuller GN et al (2002) Constitutive activation of STAT3α in brain tumors: localization to tumor endothelial cells and activation by the endothelial tyrosine kinase receptor 2 (VEGFR2). Oncogene 21:2058–2065

    Article  CAS  PubMed  Google Scholar 

  33. Kortylewski M, Yu H (2008) Role of STAT3 in suppressing anti-tumor immunity. Curr Opin Immunol 20(2):228–233

    Article  CAS  PubMed  Google Scholar 

  34. Kim ES, Hong SY, Lee HK et al (2008) Guggulsterone inhibits angiogenesis by blocking STAT3 and VEGF expression in colon cancer cells. Oncol Rep 20:1321–1327

    CAS  PubMed  Google Scholar 

  35. Heimberger AB, Priebe W (2008) Small molecular inhibitors of p-STAT3: novel agents for treatment of primary and metastatic CNS cancers. Recent Pat CNS Drug Discov 3(3):179–188

    Article  CAS  PubMed  Google Scholar 

  36. Timofeeva OA, Gaponenko V, Lockett SJ et al (2007) Rationally designed inhibitors identify STAT3 N-domain as a promising anticancer drug target. ACS Chem Biol 2(12):799–809

    Article  CAS  PubMed  Google Scholar 

  37. Singh RP, Raina K, Deep G et al (2009) Silibinin suppress growth of human prostate carcinoma PC-3 orthotopic xenograft via activation of extracellular signal-regulated kinase ½ and inhibition of signal transducers and activators of transcription signaling. Clin Cancer Res 15(2):613–621

    Article  CAS  PubMed  Google Scholar 

  38. Tyagi A, Singh RP, Ramasamy K et al (2009) Growth inhibition and regression of lung tumors by silibinin: modulation of angiogenesis by macrophage-associated cytokines and nuclear factor-kB and signal transducers and activators of transcription 3. Cancer Prev Res 2(1):74–83

    Article  CAS  Google Scholar 

  39. Leong H, Mathur PS, Greene GL (2009) Green tea catechins inhibit angiogenesis through suppression of STAT3 activation. Breast Cancer Res Treat 117:505–515

    Article  CAS  PubMed  Google Scholar 

  40. Nemenoff RA, Winn RA (2005) Role of nuclear receptors in lung tumourigenesis. Eur J Cancer 41:2561–2568

    Article  CAS  PubMed  Google Scholar 

  41. Sola B, Renoir JM (2006) Antiestrogenic therapies in solid cancers and multiple myeloma. Curr Mol Med 6:359–368

    Article  CAS  PubMed  Google Scholar 

  42. Hall JM, McDonnell DP (1999) The estrogen receptor beta-osiform (ERβ) of the human estrogen receptor modulates ERα transcriptional activity and is a key regulator of the cellular response to estrogens and antiestrogens. Endocrinology 140:5566–5578

    Article  CAS  PubMed  Google Scholar 

  43. Harris HA (2007) Estrogen receptor-β: recent lessons from in vivo studies. Mol Endocrinol 21(1):1–13

    Article  CAS  PubMed  Google Scholar 

  44. Horvath LG, Henshall SM, Lee C-S et al (2001) Frequent loss of estrogen receptor-β expression in prostate cancer. Cancer Res 61:5331–5335

    CAS  PubMed  Google Scholar 

  45. Stettner M, Kaulfub S, Burfeind P et al (2007) The relevance of estrogen receptor-β expression to the antiproliferative effects observed with histone deacetylase inhibitors and phytoestrogens in prostate cancer treatment. Mol Cancer Ther 6(10):2626–2633

    Article  CAS  PubMed  Google Scholar 

  46. Imamov O, Lopatkin NA, Gustafsson J-K (2004) Estrogen receptor β in prostate cancer. N Engl J Med 351(26):2773–2774

    Article  PubMed  Google Scholar 

  47. Pravettoni A, Mornai O, Martini PGV et al (2007) Estrogen receptor beta (ERbeta) and inhibition of prostate cancer cell proliferation: studies on the possible mechanism of action in DU145 cells. Mol Cell Endocrinol 263:46–54

    Article  CAS  PubMed  Google Scholar 

  48. Stabile LP, Davis AL, Gubish CT et al (2002) Human non-small cell lung tumors and cell derived from normal lung express both estrogen receptors (alpha) and (beta) and show biological response to estrogen. Cancer Res 62(7):2141–2150

    CAS  PubMed  Google Scholar 

  49. Marquez-Garban DC, Chen HW, Fishbein MC et al (2007) Estrogen receptor signaling pathways in human non-small cell lung cancer. Steroids 72:135–143

    Article  CAS  PubMed  Google Scholar 

  50. Ali G, Donati V, Loggini B et al (2008) Different estrogen receptors expression in distinct histologic subtypes of lung adenocarcinoma. Human Pathol 39:1465–1473

    Article  CAS  Google Scholar 

  51. Skov BG, Fisher BM, Pappot H (2008) Oestrogen receptor β over expression in males with non-small cell lung cancer is associated with better survival. Lung Cancer 59:88–94

    Article  PubMed  Google Scholar 

  52. Omoto Y, Kobayashi Y, Nishida K et al (2001) Expression, function, and clinical implications of the estrogen receptor beta in human lung cancers. Biochem Biophys Res Commun 285:340–347

    Article  CAS  PubMed  Google Scholar 

  53. Treon SP, Teoh G, Urashima M et al (1998) Anti-estrogens induce apoptosis of multiple myeloma cells. Blood 92:1749–1757

    CAS  PubMed  Google Scholar 

  54. Otsuki T, Yamada O, Kurebayshi J et al (2000) Estrogen receptors in human myeloma cells. Cancer Res 60:1434–1441

    CAS  PubMed  Google Scholar 

  55. Sola B, Renoir JM (2007) Estrogenic or anti estrogenic therapies for multiple myeloma? Mol Cancer 6:59. doi:10.1186/1476-4598-6-59

    Article  PubMed  Google Scholar 

  56. Gagliardi A, Collins DC (1993) Inhibition of angiogenesis by antiestrogens. Cancer Res 53:533–535

    CAS  PubMed  Google Scholar 

  57. Lindner DJ, Borden EC (1997) Effects of tamoxifen and interferon-β or the combination on tumor-induced angiogenesis. Int J Cancer 71:456–461

    Article  CAS  PubMed  Google Scholar 

  58. Tanabe M, Peters R, Chao W-R et al (2000) Antiestrogenic steroids, and associated pharmaceutical compositions and methods of use. U.S. Patent 6,054,446 April 25 2000

  59. Guo Y, Higazi AA, Arakelian A et al (2000) A peptide derived from the non-receptor-binding region of urokinase plasminogen activator (uPA) inhibits tumor progression and angiogenesis and induces tumor cell death in vivo. FASEB 14:1400–1410

    Article  CAS  Google Scholar 

  60. Amin K, Li J, Chao W-R et al (2003) Dietary glycine inhibits angiogenesis during wound healing and tumor growth. Cancer Biol Ther 2(2):173–178

    CAS  PubMed  Google Scholar 

  61. Ryan HE, Poloni M, McNulty W et al (2000) Hypoxia-inducible factor-1α is a positive factor in solid tumor growth. Cancer Res 60:4010–4015

    CAS  PubMed  Google Scholar 

  62. Murphy BJ, Sato BG, Dalton TP et al (2005) The metal-responsive transcription factor-1 contributes to HIF-1 activation during hypoxia stress. Biochem Biophys Res Commun 337:860–867

    Article  CAS  PubMed  Google Scholar 

  63. Quesnelle KM, Boeham AL, Grandis JR (2007) STAT-mediated EGFR signaling in cancer. J Cell Biochem 102:311–319

    Article  CAS  PubMed  Google Scholar 

  64. Gao SP, Mark KG, Leslie K et al (2007) Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J Clin Invest 117(12):3846–3856

    Article  CAS  PubMed  Google Scholar 

  65. Gridelli C, Bareschino MA, Schettino C et al (2007) Erlotinib in non-small cell lung cancer treatment: current status and future development. Oncologist 12:840–849

    Article  CAS  PubMed  Google Scholar 

  66. Renoir JM, Bouclier C, Seguin A et al (2008) Antiestrogen-mediated cell cycle arrest and apoptosis induction in breast and multiple myeloma cells. J Mol Endocrinol 40:101–112

    Article  CAS  PubMed  Google Scholar 

  67. Lonard DM, Smith CL (2002) Molecular perspectives on selective estrogen receptor modulators (SERM): progress in understanding their tissue-specific agonist and antagonist actions. Steroids 67:15024

    Article  Google Scholar 

  68. Buzadar AU (2005) TAS-108: a novel steroidal antiestrogen. Clin Cancer Res 11:906s–908s

    Google Scholar 

  69. Kumagai Y, Fujita T, Ozaki M et al (2009) Safety, tolerability and pharmacokinetics of TAS-108, a novel anti-estrogen, in healthy post menopausal Japanese women: a phase I single oral dose study. Basic Clin Pharmacol Toxicol 104:352–359

    Article  CAS  PubMed  Google Scholar 

  70. Eeullman SJ, Calaoagan JM, Sato BG et al (2010) A novel steroidal inhibitor of estrogen-related receptor alpha (ERR-alpha). Biochem Pharmacol 80:819–826

    Article  Google Scholar 

  71. Giguere V (2008) Transcriptional control of energy homeostasis by the estrogen-related receptors. Endocrine Rev 29:677–696

    Article  CAS  Google Scholar 

  72. Tremblay AM, Giguere V (2007) The NR3B subgroup: an overview. Nucl Recept Signal 5:e009

    PubMed  Google Scholar 

  73. Ao A, Wang H, Kamarajugadda S et al (2008) Involvement of estrogen-related receptors in transcriptional response to hypoxia and growth of solid tumors. Proc Natl Acad Sci USA 105:7821–7826

    Article  CAS  PubMed  Google Scholar 

  74. Mak P, Leav I, Pursell B et al (2010) ER-β impedes prostate cancer EMT by destabilizing HIF-1α and inhibiting VEGF-mediated snail nuclear localization: implication for Gleason grading. Cancer Cell 17(4):319–332

    Article  CAS  PubMed  Google Scholar 

  75. Bookout AL, Jeong Y, Downes M et al (2006) Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell 126:789–799

    Article  CAS  PubMed  Google Scholar 

  76. Lai JS, Brown LG, True LD (2004) Metastases of prostate cancer express estrogen receptor = beta. Urology 64(4):814–820

    Article  PubMed  Google Scholar 

  77. Zhu X, Leave I, Leung YK et al (2004) Dynamic regulation of estrogen receptor-beta expression by DNA methylation during prostate cancer development and metastasis. Am J Pathol 164(6):2003–2012

    Article  CAS  PubMed  Google Scholar 

  78. Kuba K, Matsumoto K, Date K (2000) HGF/NK4, a four-kringle antagonist of hepatocyte growth factor, is an angiogenesis inhibitor that suppresses tumor growth and metastasis in mice. Cancer Res 60:6737–6743

    CAS  PubMed  Google Scholar 

  79. Buettner R, Mora LB, Jove R (2002) Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res 8:945–954

    CAS  PubMed  Google Scholar 

  80. Bromberg J, Darnell JE Jr (2000) The role of STATs in transcriptional control and their impact on cellular function. Oncogene 19:2468–2473

    Article  CAS  PubMed  Google Scholar 

  81. Bartoli M, Plantt D, Lemtalsi T et al (2003) VEGF differentially activates STAT3 in microvascular endothelial cells. FASEB J 17:1562–1564

    CAS  PubMed  Google Scholar 

  82. Alas S, Bonavida B (2003) Inhibition of constitutive STAT3 activity sensitizes resistant non-Hodgkin’s lymphoma and multiple myeloma to chemotherapeutic drug-mediated apoptosis. Clin Cancer Res 9:316–326

    CAS  PubMed  Google Scholar 

  83. Chen SH, Murphy DA, Lassoued W et al (2008) Activated STAT3 is a mediator and biomarker of VEGF endothelial activation. Cancer Biol Ther 7(12):1994–2003

    Article  CAS  PubMed  Google Scholar 

  84. Yahata Y, Shirakata Y, Tokumaru S et al (2003) Nuclear translocation of phosphorylated STAT3 is essential for vascular endothelial growth factor-induced human dermal microvascular endothelial cell migration and tube formation. J Biol Chem 278:40026–40031

    Article  CAS  PubMed  Google Scholar 

  85. Xu Q, Briggs J, Park S et al (2005) Targeting STAT3 blocks both HIF and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene 24:5552–5560

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidia Sambucetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chao, WR., Amin, K., Shi, Y. et al. SR16388: a steroidal antiangiogenic agent with potent inhibitory effect on tumor growth in vivo. Angiogenesis 14, 1–16 (2011). https://doi.org/10.1007/s10456-010-9191-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-010-9191-z

Keywords

Navigation