Skip to main content

Advertisement

Log in

Vasculogenesis in infantile hemangioma

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Infantile hemangioma is a vascular tumor that occurs in 5–10% of infants of European descent. A defining feature of infantile hemangioma is the dramatic growth and development into a disorganized mass of blood vessels. Subsequently, a slow spontaneous involution begins around 1 year of age and continues for 4–6 years. The growth and involution of infantile hemangioma is very different from other vascular tumors and vascular malformations, which do not regress and can occur at any time during childhood or adult life. Much has been learned from careful study of the tissue morphology and gene expression patterns during the life-cycle of hemangioma. Tissue explants and tumor-derived cell populations have provided further insight to unravel the cellular and molecular basis of infantile hemangioma. A multipotent progenitor cell capable of de novo blood vessel formation has been isolated from infantile hemangioma, which suggests that this common tumor of infancy, long considered to be a model for pathologic angiogenesis, may also represent pathologic vasculogenesis. Whether viewed as angiogenesis or vasculogenesis, infantile hemangioma represents a vascular perturbation during a critical period of post-natal growth, and as such provides a unique opportunity to decipher mechanisms of human vascular development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mulliken JB, Fishman SJ, Burrows PE (2000) Vascular anomalies. Curr Probl Surg 37:517–584

    Article  PubMed  CAS  Google Scholar 

  2. Drolet BA, Esterly NB, Frieden IJ (1999) Hemangiomas in children. N Engl J Med 341:173–181

    Article  PubMed  CAS  Google Scholar 

  3. Haggstrom AN, Drolet BA, Baselga E, Chamlin SL, Garzon MC, Horii KA, Lucky AW, Mancini AJ, Metry DW, Newell B et al (2007) Prospective study of infantile hemangiomas: demographic, prenatal, and perinatal characteristics. J Pediatr 150:291–294

    Article  PubMed  Google Scholar 

  4. Frieden IJ, Haggstrom AN, Drolet BA, Mancini AJ, Friedlander SF, Boon L, Chamlin SL, Baselga E, Garzon MC, Nopper AJ et al (2005) Infantile hemangiomas: current knowledge, future directions. In: Proceedings of a research workshop on infantile hemangiomas, April 7–9, 2005, Bethesda. Pediatr Dermatol 22:383–406

  5. Metry DW, Haggstrom AN, Drolet BA, Baselga E, Chamlin S, Garzon M, Horii K, Lucky A, Mancini AJ, Newell B et al (2006) A prospective study of PHACE syndrome in infantile hemangiomas: demographic features, clinical findings, and complications. Am J Med Genet A 140:975–986

    PubMed  CAS  Google Scholar 

  6. Huang SA, Tu HM, Harney JW, Venihaki M, Butte AJ, Kozakewich HP, Fishman SJ, Larsen PR (2000) Severe hypothyroidism caused by type 3 iodothyronine deiodinase in infantile hemangiomas. N Engl J Med 343:185–189

    Article  PubMed  CAS  Google Scholar 

  7. Boon LM, MacDonald DM, Mulliken JB (1999) Complications of systemic corticosteroid therapy for problematic hemangioma. Plast Reconstr Surg 104:1616–1623

    Article  PubMed  CAS  Google Scholar 

  8. Enjolras O, Breviere GM, Roger G, Tovi M, Pellegrino B, Varotti E, Soupre V, Picard A, Leverger G (2004) Vincristine treatment for function- and life-threatening infantile hemangioma. Arch Pediatr 11:99–107

    Article  PubMed  CAS  Google Scholar 

  9. Fawcett SL, Grant I, Hall PN, Kelsall AW, Nicholson JC (2004) Vincristine as a treatment for a large haemangioma threatening vital functions. Br J Plast Surg 57:168–171

    Article  PubMed  CAS  Google Scholar 

  10. Ezekowitz RA, Mulliken JB, Folkman J (1992) Interferon alfa-2a therapy for life-threatening hemangiomas of infancy. N Engl J Med 326:1456–1463

    PubMed  CAS  Google Scholar 

  11. Chang E, Boyd A, Nelson CC, Crowley D, Law T, Keough KM, Folkman J, Ezekowitz RA, Castle VP (1997) Successful treatment of infantile hemangiomas with interferon-alpha-2b. J Pediatr Hematol Oncol 19:237–244

    Article  PubMed  CAS  Google Scholar 

  12. Barlow CF, Priebe CJ, Mulliken JB, Barnes PD, Mac Donald D, Folkman J, Ezekowitz RA (1998) Spastic diplegia as a complication of interferon Alfa-2a treatment of hemangiomas of infancy. J Pediatr 132:527–530

    Article  PubMed  CAS  Google Scholar 

  13. Greinwald JH Jr, Burke DK, Bonthius DJ, Bauman NM, Smith RJ (1999) An update on the treatment of hemangiomas in children with interferon alfa-2a. Arch Otolaryngol Head Neck Surg 125:21–27

    PubMed  Google Scholar 

  14. Leaute-Labreze C, Dumas de la Roque E, Hubiche T, Boralevi F, Thambo JB, Taieb A (2008) Propranolol for severe hemangiomas of infancy. N Engl J Med 358:2649–2651

    Article  PubMed  CAS  Google Scholar 

  15. Chang LC, Haggstrom AN, Drolet BA, Baselga E, Chamlin SL, Garzon MC, Horii KA, Lucky AW, Mancini AJ, Metry DW et al (2008) Growth characteristics of infantile hemangiomas: implications for management. Pediatrics 122:360–367

    Article  PubMed  Google Scholar 

  16. Mancini AJ, Smoller BR (1996) Proliferation and apoptosis within juvenile capillary hemangiomas. Am J Dermatopathol 18:505–514

    Article  PubMed  CAS  Google Scholar 

  17. Smoller BR, Apfelberg DB (1993) Infantile (juvenile) capillary hemangioma: a tumor of heterogeneous cellular elements. J Cutan Pathol 20:330–336

    Article  PubMed  CAS  Google Scholar 

  18. Takahashi K, Mulliken JB, Kozakewich HP, Rogers RA, Folkman J, Ezekowitz RA (1994) Cellular markers that distinguish the phases of hemangioma during infancy and childhood. J Clin Invest 93:2357–2364

    Article  PubMed  CAS  Google Scholar 

  19. Chang J, Most D, Bresnick S, Mehrara B, Steinbrech DS, Reinisch J, Longaker MT, Turk AE (1999) Proliferative hemangiomas: analysis of cytokine gene expression and angiogenesis. Plast Reconstr Surg 103:1–9 (discussion 10)

    Article  PubMed  CAS  Google Scholar 

  20. Picard A, Boscolo E, Khan ZA, Bartch TC, Mulliken JB, Vazquez MP, Bischoff J (2008) IGF-2 and FLT-1/VEGF-R1 mRNA levels reveal distinctions and similarities between congenital and common infantile hemangioma. Pediatr Res 63:263–267

    Article  PubMed  Google Scholar 

  21. Yu Y, Varughese J, Brown LF, Mulliken JB, Bischoff J (2001) Increased Tie2 expression, enhanced response to angiopoietin-1, and dysregulated angiopoietin-2 expression in hemangioma-derived endothelial cells. Am J Pathol 159:2271–2280

    PubMed  CAS  Google Scholar 

  22. Yu Y, Flint AF, Mulliken JB, Wu JK, Bischoff J (2004) Endothelial progenitor cells in infantile hemangioma. Blood 103:1373–1375

    Article  PubMed  CAS  Google Scholar 

  23. North PE, Waner M, Mizeracki A, Mrak RE, Nicholas R, Kincannon J, Suen JY, Mihm MC Jr (2001) A unique microvascular phenotype shared by juvenile hemangiomas and human placenta. Arch Dermatol 137:559–570

    PubMed  CAS  Google Scholar 

  24. Barnes CM, Huang S, Kaipainen A, Sanoudou D, Chen EJ, Eichler GS, Guo Y, Yu Y, Ingber DE, Mulliken JB et al (2005) Evidence by molecular profiling for a placental origin of infantile hemangioma. Proc Natl Acad Sci USA 102:19097–19102

    Article  PubMed  CAS  Google Scholar 

  25. Barnes CM, Christison-Lagay EA, Folkman J (2007) The placenta theory and the origin of infantile hemangioma. Lymphat Res Biol 5:245–255

    Article  PubMed  Google Scholar 

  26. Chang EI, Chang EI, Thangarajah H, Hamou C, Gurtner GC (2007) Hypoxia, hormones, and endothelial progenitor cells in hemangioma. Lymphat Res Biol 5:237–243

    Article  PubMed  CAS  Google Scholar 

  27. Pittman KM, Losken HW, Kleinman ME, Marcus JR, Blei F, Gurtner GC, Marchuk DA (2006) No evidence for maternal-fetal microchimerism in infantile hemangioma: a molecular genetic investigation. J Invest Dermatol 126:2533–2538

    Article  PubMed  CAS  Google Scholar 

  28. Regnier S, Dupin N, Le Danff C, Wassef M, Enjolras O, Aractingi S (2007) Endothelial cells in infantile haemangiomas originate from the child and not from the mother (a fluorescence in situ hybridization-based study). Br J Dermatol 157:158–160

    Article  PubMed  CAS  Google Scholar 

  29. Bauland CG, van Steensel MA, Steijlen PM, Rieu PN, Spauwen PH (2006) The pathogenesis of hemangiomas: a review. Plast Reconstr Surg 117:29e–35e

    Article  PubMed  CAS  Google Scholar 

  30. Pack GT, Miller TR (1950) Hemangiomas; classification, diagnosis and treatment. Angiology 1:405–426

    Article  PubMed  CAS  Google Scholar 

  31. Virchow R (1863) Die Krankhaften Geschwulste. August Hirschwald, Berlin

    Google Scholar 

  32. Pack G (1950) Hemangiomas, classification, diagnosis, and treatment. Angiology 1:40

    Article  Google Scholar 

  33. Malan E (1974) Vascular Malformations (Angiodysplasias). Carlo Erba Foundation, Milan, p 4

  34. Mulliken JB, Zetter BR, Folkman J (1982) In vitro characteristics of endothelium from hemangiomas and vascular malformations. Surgery 92:348–353

    PubMed  CAS  Google Scholar 

  35. Dosanjh A, Chang J, Bresnick S, Zhou L, Reinisch J, Longaker M, Karasek M (2000) In vitro characteristics of neonatal hemangioma endothelial cells: similarities and differences between normal neonatal and fetal endothelial cells. J Cutan Pathol 27:441–450

    Article  PubMed  CAS  Google Scholar 

  36. Boye E, Yu Y, Paranya G, Mulliken JB, Olsen BR, Bischoff J (2001) Clonality and altered behavior of endothelial cells from hemangiomas. J Clin Invest 107:745–752

    Article  PubMed  CAS  Google Scholar 

  37. Dadras SS, North PE, Bertoncini J, Mihm MC, Detmar M (2004) Infantile hemangiomas are arrested in an early developmental vascular differentiation state. Mod Pathol 17:1068–1079

    Article  PubMed  Google Scholar 

  38. Walter JW, North PE, Waner M, Mizeracki A, Blei F, Walker JW, Reinisch JF, Marchuk DA (2002) Somatic mutation of vascular endothelial growth factor receptors in juvenile hemangioma. Genes Chromosomes Cancer 33:295–303

    Article  PubMed  CAS  Google Scholar 

  39. Khan ZA, Melero-Martin JM, Wu X, Paruchuri S, Boscolo E, Mulliken JB, Bischoff J (2006) Endothelial progenitor cells from infantile hemangioma and umbilical cord blood display unique cellular responses to endostatin. Blood 108:915–921

    Article  PubMed  CAS  Google Scholar 

  40. O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88:277–285

    Article  PubMed  Google Scholar 

  41. Kleinman ME, Tepper OM, Capla JM, Bhatt KA, Ceradini DJ, Galiano RD, Blei F, Levine JP, Gurtner GC (2003) Increased circulating AC133+ CD34+ endothelial progenitor cells in children with hemangioma. Lymphat Res Biol 1:301–307

    Article  PubMed  Google Scholar 

  42. Ozerdem U, Grako KA, Dahlin-Huppe K, Monosov E, Stallcup WB (2001) NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev Dyn 222:218–227

    Article  PubMed  CAS  Google Scholar 

  43. Tigges U, Hyer EG, Scharf J, Stallcup WB (2008) FGF2-dependent neovascularization of subcutaneous Matrigel plugs is initiated by bone marrow-derived pericytes and macrophages. Development 135:523–532

    Article  PubMed  CAS  Google Scholar 

  44. Li Q, Yu Y, Bischoff J, Mulliken JB, Olsen BR (2003) Differential expression of CD146 in tissues and endothelial cells derived from infantile haemangioma and normal human skin. J Pathol 201:296–302

    Article  PubMed  CAS  Google Scholar 

  45. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

    Article  PubMed  CAS  Google Scholar 

  46. Tang W, Zeve D, Suh JM, Bosnakovski D, Kyba M, Hammer RE, Tallquist MD, Graff JM (2008) White fat progenitor cells reside in the adipose vasculature. Science 322:583–586

    Article  PubMed  CAS  Google Scholar 

  47. Khan ZA, Boscolo E, Picard A, Psutka S, Melero-Martin JM, Bartch TC, Mulliken JB, Bischoff J (2008) Multipotential stem cells recapitulate human infantile hemangioma in immunodeficient mice. J Clin Invest 118:2592–2599

    PubMed  CAS  Google Scholar 

  48. Ritter MR, Dorrell MI, Edmonds J, Friedlander SF, Friedlander M (2002) Insulin-like growth factor 2 and potential regulators of hemangioma growth and involution identified by large-scale expression analysis. Proc Natl Acad Sci USA 99:7455–7460

    Article  PubMed  CAS  Google Scholar 

  49. North PE, Waner M, Mizeracki A, Mihm MC Jr (2000) GLUT1: a newly discovered immunohistochemical marker for juvenile hemangiomas. Hum Pathol 31:11–22

    Article  PubMed  CAS  Google Scholar 

  50. Melero-Martin JM, De Obaldia ME, Kang SY, Khan ZA, Yuan L, Oettgen P, Bischoff J (2008) Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ Res 103:194–202

    Article  PubMed  CAS  Google Scholar 

  51. Loffredo F, Lee RT (2008) Therapeutic vasculogenesis: it takes two. Circ Res 103:128–130

    Article  PubMed  CAS  Google Scholar 

  52. Au P, Tam J, Fukumura D, Jain RK (2008) Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood 111:4551–4558

    Article  PubMed  CAS  Google Scholar 

  53. Tan ST, Wallis RA, He Y, Davis PF (2004) Mast cells and hemangioma. Plast Reconstr Surg 113:999–1011

    Article  PubMed  Google Scholar 

  54. Pasyk KA, Cherry GW, Grabb WC, Sasaki GH (1984) Quantitative evaluation of mast cells in cellularly dynamic and adynamic vascular malformations. Plast Reconstr Surg 73:69–77

    Article  PubMed  CAS  Google Scholar 

  55. Ritter MR, Reinisch J, Friedlander SF, Friedlander M (2006) Myeloid cells in infantile hemangioma. Am J Pathol 168:621–628

    Article  PubMed  Google Scholar 

  56. Nguyen VA, Furhapter C, Romani N, Weber F, Sepp N (2004) Infantile hemangioma is a proliferation of beta 4-negative endothelial cells adjacent to HLA-DR-positive cells with dendritic cell morphology. Hum Pathol 35:739–744

    Article  PubMed  CAS  Google Scholar 

  57. Jang YC, Isik FF, Gibran NS (2000) Nerve distribution in hemangiomas depends on the proliferative state of the microvasculature. J Surg Res 93:144–148

    Article  PubMed  CAS  Google Scholar 

  58. Berard M, Sordello S, Ortega N, Carrier JL, Peyri N, Wassef M, Bertrand N, Enjolras O, Drouet L, Plouet J (1997) Vascular endothelial growth factor confers a growth advantage in vitro and in vivo to stromal cells cultured from neonatal hemangiomas. Am J Pathol 150:1315–1326

    PubMed  CAS  Google Scholar 

  59. Jinnin M, Medici D, Park L, Limaye N, Liu Y, Boscolo E, Bischoff J, Vikkula M, Boye E, Olsen BR (2008) Suppressed NFAT-dependent VEGFR1 expression and constitutive VEGFR2 signaling in infantile hemangioma. Nat Med 14:1236–1246

    Article  PubMed  CAS  Google Scholar 

  60. Zhang L, Lin X, Wang W, Zhuang X, Dong J, Qi Z, Hu Q (2005) Circulating level of vascular endothelial growth factor in differentiating hemangioma from vascular malformation patients. Plast Reconstr Surg 116:200–204

    Article  PubMed  CAS  Google Scholar 

  61. Fong GH, Rossant J, Gertsenstein M, Breitman ML (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376:66–70

    Article  PubMed  CAS  Google Scholar 

  62. Blei F, Walter J, Orlow SJ, Marchuk DA (1998) Familial segregation of hemangiomas and vascular malformations as an autosomal dominant trait. Arch Dermatol 134:718–722

    Article  PubMed  CAS  Google Scholar 

  63. Walter JW, Blei F, Anderson JL, Orlow SJ, Speer MC, Marchuk DA (1999) Genetic mapping of a novel familial form of infantile hemangioma. Am J Med Genet 82:77–83

    Article  PubMed  CAS  Google Scholar 

  64. Pramanik K, Chun CZ, Garnaas MK, Samant GV, Li K, Horswill MA, North PE, Ramchandran R (2009) Dusp-5 and Snrk-1 coordinately function during vascular development and disease. Blood 113:1184–1191

    Article  PubMed  CAS  Google Scholar 

  65. Qian F, Zhen F, Ong C, Jin SW, Meng Soo H, Stainier DY, Lin S, Peng J, Wen Z (2005) Microarray analysis of zebrafish cloche mutant using amplified cDNA and identification of potential downstream target genes. Dev Dyn 233:1163–1172

    Article  PubMed  CAS  Google Scholar 

  66. Sumanas S, Jorniak T, Lin S (2005) Identification of novel vascular endothelial-specific genes by the microarray analysis of the zebrafish cloche mutants. Blood 106:534–541

    Article  PubMed  CAS  Google Scholar 

  67. St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B et al (2000) Genes expressed in human tumor endothelium. Science 289:1197–1202

    Article  PubMed  CAS  Google Scholar 

  68. Arbiser JL, Weiss SW, Arbiser ZK, Bravo F, Govindajaran B, Caceres-Rios H, Cotsonis G, Recavarren S, Swerlick RA, Cohen C (2001) Differential expression of active mitogen-activated protein kinase in cutaneous endothelial neoplasms: implications for biologic behavior and response to therapy. J Am Acad Dermatol 44:193–197

    Article  PubMed  CAS  Google Scholar 

  69. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:1171–1180

    Article  PubMed  CAS  Google Scholar 

  70. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N et al (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60

    Article  PubMed  CAS  Google Scholar 

  71. Hawighorst T, Skobe M, Streit M, Hong YK, Velasco P, Brown LF, Riccardi L, Lange-Asschenfeldt B, Detmar M (2002) Activation of the tie2 receptor by angiopoietin-1 enhances tumor vessel maturation and impairs squamous cell carcinoma growth. Am J Pathol 160:1381–1392

    PubMed  CAS  Google Scholar 

  72. Stoeltzing O, Ahmad SA, Liu W, McCarty MF, Parikh AA, Fan F, Reinmuth N, Bucana CD, Ellis LM (2002) Angiopoietin-1 inhibits tumour growth and ascites formation in a murine model of peritoneal carcinomatosis. Br J Cancer 87:1182–1187

    Article  PubMed  CAS  Google Scholar 

  73. Feng Y, vom Hagen F, Pfister F, Djokic S, Hoffmann S, Back W, Wagner P, Lin J, Deutsch U, Hammes HP (2007) Impaired pericyte recruitment and abnormal retinal angiogenesis as a result of angiopoietin-2 overexpression. Thromb Haemost 97:99–108

    PubMed  CAS  Google Scholar 

  74. Perry BN, Govindarajan B, Bhandarkar SS, Knaus UG, Valo M, Sturk C, Carrillo CO, Sohn A, Cerimele F, Dumont D et al (2006) Pharmacologic blockade of angiopoietin-2 is efficacious against model hemangiomas in mice. J Invest Dermatol 126:2316–2322

    Article  PubMed  CAS  Google Scholar 

  75. Sun JF, Phung T, Shiojima I, Felske T, Upalakalin JN, Feng D, Kornaga T, Dor T, Dvorak AM, Walsh K et al (2005) Microvascular patterning is controlled by fine-tuning the Akt signal. Proc Natl Acad Sci USA 102:128–133

    Article  PubMed  CAS  Google Scholar 

  76. Phung TL, Ziv K, Dabydeen D, Eyiah-Mensah G, Riveros M, Perruzzi C, Sun J, Monahan-Earley RA, Shiojima I, Nagy JA et al (2006) Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin. Cancer Cell 10:159–170

    Article  PubMed  CAS  Google Scholar 

  77. Kleinman ME, Greives MR, Churgin SS, Blechman KM, Chang EI, Ceradini DJ, Tepper OM, Gurtner GC (2007) Hypoxia-induced mediators of stem/progenitor cell trafficking are increased in children with hemangioma. Arterioscler Thromb Vasc Biol 27:2664–2670

    Article  PubMed  CAS  Google Scholar 

  78. Isik FF, Rand RP, Gruss JS, Benjamin D, Alpers CE (1996) Monocyte chemoattractant protein-1 mRNA expression in hemangiomas and vascular malformations. J Surg Res 61:71–76

    Article  PubMed  CAS  Google Scholar 

  79. Kraling BM, Razon MJ, Boon LM, Zurakowski D, Seachord C, Darveau RP, Mulliken JB, Corless CL, Bischoff J (1996) E-selectin is present in proliferating endothelial cells in human hemangiomas. Am J Pathol 148:1181–1191

    PubMed  CAS  Google Scholar 

  80. Oh IY, Yoon CH, Hur J, Kim JH, Kim TY, Lee CS, Park KW, Chae IH, Oh BH, Park YB et al (2007) Involvement of E-selectin in recruitment of endothelial progenitor cells and angiogenesis in ischemic muscle. Blood 110:3891–3899

    Article  PubMed  CAS  Google Scholar 

  81. Gainers ME, Descheny L, Barthel SR, Liu L, Wurbel MA, Dimitroff CJ (2007) Skin-homing receptors on effector leukocytes are differentially sensitive to glyco-metabolic antagonism in allergic contact dermatitis. J Immunol 179:8509–8518

    PubMed  CAS  Google Scholar 

  82. Hidalgo A, Weiss LA, Frenette PS (2002) Functional selectin ligands mediating human CD34(+) cell interactions with bone marrow endothelium are enhanced postnatally. J Clin Invest 110:559–569

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Arnaud Picard, Hôpital d’enfants Armand-Trousseau, Service de Chirurgie Maxillo-faciale et Plastique, Paris, France, for providing the images of the CD133 and NG2 immunostaining in Fig. 2. We also thank Ms. Kristin Johnson for her help with preparing the figures. Writing of this article was supported by a grant from the National Institutes of Health (P01 AR48564).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joyce Bischoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boscolo, E., Bischoff, J. Vasculogenesis in infantile hemangioma. Angiogenesis 12, 197–207 (2009). https://doi.org/10.1007/s10456-009-9148-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-009-9148-2

Keywords

Navigation