Skip to main content
Log in

Recombinant human prothrombin kringle-2 induces bovine capillary endothelial cell cycle arrest at G0–G1 phase through inhibition of cyclin D1/CDK4 complex: Modulation of reactive oxygen species generation and up-regulation of cyclin-dependent kinase inhibitors

  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Prothrombin is a plasma glycoprotein involved in blood coagulation and, as we have previously reported, prothrombin kringles inhibit BCE (bovine capillary endothelial) cell proliferation. To reveal the mechanism, we investigated the influence of rk-2 (recombinant human prothrombin kringle-2) on the BCE cell cycle progression and ROS (reactive oxygen species) generation using FACS (fluorescence-activated cell sorter) analysis. Cell cycle analysis showed a decrease of G1 phase cells in cells treated with bFGF (basic fibroblast growth factor) and an increase in cells treated with rk-2, as compared with the control cells. But, the portion of the S phase was reversed. In Western blot analysis, bFGF induced cytoplasmic translocation of p21Waf1/Cip1 and p27Kip1 and phosphorylation of p27Kip1 but rk-2 treatment inhibited translocation of p21Waf1/Cip1 and p27Kip1 from nucleus to cytoplasm and phosphorylation of p27Kip1. Also, rk-2 induced up-regulation of p53 and nuclear p21Waf1/Cip1 and inhibited the cyclin D1/CDK4 (cyclin-dependent kinase 4) complex. The ROS level of rk-2-treated BCE cells was increased 2-fold when compared with the control, but treatment with NAC (N-Acetyl-L-cysteine), an anti-oxidant, decreased ROS generation about 55% as compared with the rk-2 treatment. NAC treatment also restored cell cycle progression inhibited by rk-2 and down-regulated p53 and nuclear p21Waf1/Cip1 expression induced by rk-2.

These data suggest that rk-2 induces the BCE cell cycle arrest at G0–G1 phase through inhibition of the cyclin D1/CDK4 complex caused by increase of ROS generation and nuclear cyclin-dependent kinase inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BCE:

bovine capillary endothelial

bFGF:

basic fibroblast growth factor

CDK:

cyclin-dependent kinase

CKIs:

cyclin-dependent kinase inhibitors

CS:

calf serum

DCFH-DA:

2′,7′-dichlorofluorescein diacetate

DMEM:

Dulbecco’s modified Eagle’s medium

FACS:

fluorescence-activated cell sorter

NAC:

N-Acetyl-L-cysteine

PBS:

phosphate-buffered saline

Rb:

retinoblastoma tumor suppressor gene product

rk-2:

recombinant human prothrombin kringle-2

ROS:

reactive oxygen species

SDS-PAGE:

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

References

  1. Folkman J, Shing Y. Angiogenesis. J Biol Chem 1992; 267: 10931–4

    PubMed  CAS  Google Scholar 

  2. Folkman J, D’Amore PA. Blood vessel formation: What is its molecular basis? Cell 1996; 87: 1153–5

    Article  PubMed  CAS  Google Scholar 

  3. Kandel J, Bossy-Wetzel E, Radvanyi F et al. Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma. Cell 1991; 66: 1095–104

    Article  PubMed  CAS  Google Scholar 

  4. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev 1997; 18: 4–25

    Article  PubMed  CAS  Google Scholar 

  5. Good DJ, Polverini PJ, Rastinejad F et al. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci USA 1990; 87: 6624–8

    Article  PubMed  CAS  Google Scholar 

  6. O’Reilly MS, Holmgren L, Shing Y et al. Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994; 79: 315–28

    Article  PubMed  CAS  Google Scholar 

  7. O’Reilly MS, Boehm T, Shing Y et al. Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88: 277–85

    Article  PubMed  CAS  Google Scholar 

  8. Lee TH, Rhim T, Kim SS. Prothrombin kringle-2 domain has growth inhibitory activity against bFGF-stimulated capillary endothelial cell. J Biol Chem 1998; 273: 28805–12

    Article  PubMed  CAS  Google Scholar 

  9. Kim TH, Kim E, Yoon D et a1. Recombinant human prothrombin kringles have potent anti-angiogenic activities and inhibit Lewis Lung Carcinoma tumor growth and metastases. Angiogenesis 2002; 5: 191–201

    Article  PubMed  CAS  Google Scholar 

  10. Claesson-Welsh L, Welsh M, Ito N et al. Angiostatin induces endothelial cell apoptosis and activation of focal adhesion kinase independently of the integrin-binding motif RGD. Proc Natl Acad Sci USA 1998; 95: 5579–83

    Article  PubMed  CAS  Google Scholar 

  11. Liu J, Razani B, Tang S et al. Angiogenesis activators and inhibitors differentially regulate caveolin-1 expression and caveolae formation in vascular endothelial cells. Angiogenesis inhibitors block vascular endothelial growth factor-induced down-regulation of caveolin-1. J Biol Chem 1999; 274: 15781–5

    Article  PubMed  CAS  Google Scholar 

  12. Moser TL, Stack MS, Asplin I et al. Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci USA 1999; 96: 2811–6

    Article  PubMed  CAS  Google Scholar 

  13. Lu H, Dhanabal M, Volk R et al. Kringle-5 causes cell cycle arrest and apoptosis of endothelial cells. Biochem Biophys Res Commun 1999; 258: 668–73

    Article  PubMed  CAS  Google Scholar 

  14. Norbury C, Nures P. Animal cell cycles and their control. Annu Rev Biochem 1992; 61: 441–70

    Article  PubMed  CAS  Google Scholar 

  15. Pavletich NP. Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J Mol Biol 1999; 287: 821–8

    Article  PubMed  CAS  Google Scholar 

  16. Sauer H, Wartenberg M, Hescheler J. Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem 2001; 11: 173–86

    Article  PubMed  CAS  Google Scholar 

  17. Boonstra J, Post JA. Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene 2004; 337: 1–13

    Article  PubMed  CAS  Google Scholar 

  18. Rancourt RC, Hayes DD, Chess PR et al. Growth arrest in G1 protects against oxygen-induced DNA damage and cell death. J Cell Physiol 2002; 193: 26–36

    Article  PubMed  CAS  Google Scholar 

  19. Lundberg AS, Weinberg RA. Control of the cell cycle and apoptosis. Eur J Cancer 1999; 35: 1886–94

    Article  PubMed  CAS  Google Scholar 

  20. Pietenpol JA, Stewart ZA. Cell cycle checkpoint signaling: Cell cycle arrest versus apoptosis. Toxicology 2002; 181–182: 475–81

    Article  PubMed  Google Scholar 

  21. Lam EW-F, Watson RJ. An E2F-binding site mediates cell-cycle regulated repression of mouse B-myb transcription. EMBO J 1993; 12: 2705–13

    PubMed  CAS  Google Scholar 

  22. Lelkes PI, Hanh KL, Sukovich DA et al. On the possible role of reactive oxygen species in angiogenesis. Adv Exp Med Biol 1998; 454: 295–310

    PubMed  CAS  Google Scholar 

  23. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 1997; 88: 323–31

    Article  PubMed  CAS  Google Scholar 

  24. Helt CE, Rancourt RC, Staversky RJ et al. p53-dependent induction of P21Cip1/WAF1/Sdi1 protects against oxygen-induced toxicity. Toxicol Sci 2001; 63: 214–22

    Article  PubMed  CAS  Google Scholar 

  25. Sherr CJ, Roberts JM. CDK inhibitors: Positive and negative regulators of G1-phase progression. Genes Dev 13: 1501–12

    Article  PubMed  CAS  Google Scholar 

  26. Griscelli F, Li H, Bennaceur-Griscelli A et al. Angiostatin gene transfer: Inhibition of tumor growth in vivo by blockage of endothelial cell proliferation associated with a mitosis arrest. Proc Natl Acad Sci USA 1998; 95: 6367–72

    Article  PubMed  CAS  Google Scholar 

  27. Vidal A, Koff A. Cell-cycle inhibitors: Three families united by a common cause. Gene 2000; 247: 1–15

    Article  PubMed  CAS  Google Scholar 

  28. Vlach J, Hennecke S, Amati B. Phosphorylation-dependent degradation of the cyclin-dependent kinase inhibitor p27Kip1. EMBO J 1997; 16: 5334–44

    Article  PubMed  CAS  Google Scholar 

  29. Boehm M, Yoshimoto T, Crook MF et al. A growth factor-dependent nuclear kinase phosphorylates p27Kip and regulates cell cycle progression. EMBO J 2002; 21: 3390–401

    Article  PubMed  CAS  Google Scholar 

  30. Chen QM, Bartholomew JC, Campisi J et al. Molecular analysis of H2O2 induced senescence-like growth arrest in normal human fibroblasts: p53 and Rb control G1 arrest but not cell replication. Biochem J 1998; 332: 43–50

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant No. R01-2005-000-10179-0 from the Basic Research Program of the Korea Science & Engineering Foundation and the Brain Korea 21 Project in 2005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soung Soo Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, T.H., Oh, S. & Kim, S.S. Recombinant human prothrombin kringle-2 induces bovine capillary endothelial cell cycle arrest at G0–G1 phase through inhibition of cyclin D1/CDK4 complex: Modulation of reactive oxygen species generation and up-regulation of cyclin-dependent kinase inhibitors. Angiogenesis 8, 307–314 (2006). https://doi.org/10.1007/s10456-005-9020-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-005-9020-y

Key words

Navigation