Skip to main content
Log in

Angiogenesis in ischaemic and hypertrophic hearts induced by long-term bradycardia

  • Review
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Angiogenesis and improved left ventricular function as a consequence of long-term bradycardia were first demonstrated in normal hearts, either electrically paced (rabbits, pigs) or treated with a selective sinus blocking drug alinidine (rats). Here we review the evidence that chronic heart rate reduction can have similar effects in the heart with compromised vascular supply, due to either hypertensive or haemodynamic overload hypertrophy (rats, rabbits) or ischaemic damage (rats, rabbits, pigs). Bradycardia induced over several weeks increased capillarity in all hypertrophied hearts, and in border and remote left ventricular myocardium of infarcted hearts. In some, but not all cases, coronary blood flow was improved by heart rate reduction, suggesting enlargement of the resistance vasculature in some circumstances. Cardiac or left ventricular function indices, which were depressed by hypertrophy or ischaemic damage, were preserved or even enhanced by chronic heart rate reduction. The expansion of the capillary bed in the vascularly compromised heart induced by bradycardia may be stimulated by mechanical stretch of the endothelium and/or VEGF activated by chamber dilation and myocyte stretch. The increased number of capillaries and more homogeneous distribution of capillary perfusion would support the better pump function, even in the absence of higher coronary flow. The beneficial impact of chronic heart rate reduction on myocardial angiogenesis and function in cardiac hypertrophy and infarction may be major factor in the success of beta-blockers in treatment of human heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CD:

capillary density

C:F ratio:

capillary-to-fibre ratio

FGF:

fibroblast growth factor

LV:

left ventricle

VEGF:

vascular endothelial growth factor

References

  1. Schaper W. (1987). Heart rate reduction, a new and old therapeutic principle?. Eur Heart J 8(Suppl L):1–4

    PubMed  Google Scholar 

  2. Poupa O, Rakusan K, Ostadal B (1970). The effect of physical activity upon the heart in the vertebrates. Med Sport 4:202–235

    Google Scholar 

  3. Poupa O (1994). Cardiac muscle and its blood supply: palaeophysiological notes. Cell Mol Biol 40:153–165

    CAS  Google Scholar 

  4. Rakusan K (1995). Coronary angiogenesis. From morphometry to molecular biology and back. Ann N Y Acad Sci 752:257–266

    Article  PubMed  CAS  Google Scholar 

  5. Wright AJA, Hudlicka O (1981). Capillary growth and changes in heart performance induced by chronic bradycardial pacing in the rabbit. Circ Res 49:469–478

    PubMed  CAS  Google Scholar 

  6. Brown MD, Davies MK, Hudlicka O, Townsend P (1994a). Long term bradycardia by electrical pacing: a new method for studying heart rate reduction. Cardiovasc Res 28:1774–1779

    PubMed  CAS  Google Scholar 

  7. Brown MD, Davies K, Hudlicka O (1994b). The effect of long-term bradycardia on heart microvascular supply and performance. Cell Mol Biol Res 40:137–142

    PubMed  CAS  Google Scholar 

  8. Brown MD, Cleasby MJ, Hudlicka O (1990). Capillary supply of hypertrophied rat hearts after chronic treatment with the bradycardic agent alinidine (Abstract). J Physiol 427:40

    Google Scholar 

  9. Hudlicka O, Brown MD (1996). Postanatal growth of the heart and its blood vessels. J Vasc Res 33:266–287

    PubMed  CAS  Google Scholar 

  10. Zheng W, Brown MD, Brock TA, et al. (1999). Bradycardia-induced coronary angiogenesis is dependent on vascular endothelial growth factor. Circ Res 85:192–198

    PubMed  CAS  Google Scholar 

  11. Hudlicka O, Wright AJA (1986). Capillary diffusion capacity in long-term bradycardially paced rabbit hearts. Int J Microcirc Clin & Exper (Abstract) 4:395

    Google Scholar 

  12. Kendall MJ (2000). Clinical trial data on the cardioprotective effects of beta blockade. Basic Res Cardiol 95(Suppl 1):125–130

    Google Scholar 

  13. Nuttall SL, Langford NJ, Kendall MJ (2000). Beta-blockers in heart failure. 1. Clinical Evidence. J Clin Pharm Ther 25:395–398

    Article  PubMed  CAS  Google Scholar 

  14. Nuttall SL, Langford NJ, Kendall MJ (2001). Beta-blockers in heart failure. 2. Mode of action. J Clin Pharm Ther 26:1–4

    Article  PubMed  CAS  Google Scholar 

  15. Berdaux A, Bossier JR, Giudicelli JF (1977). Effects of atenolol on regional myocardial blood flow and ST segment elevation in the canine myocardium. Br J Pharmacol 60: 433–439

    PubMed  CAS  Google Scholar 

  16. Nagatsu M, Spinale FG, Koide M, et al. (2000). Bradycardia and the role of β-blockade in the amerlioration of left ventricular dysfunction. Circulation 101:653–659

    PubMed  CAS  Google Scholar 

  17. Shimada K, Nishikimi T, Kawarabayashi T, et al. (1995). Effect of prolonged beta-adrenergic blockade induced by atenolol on the left ventricular remodelling after acute myocardial infarction in the rat. Jap Heart J 36:81–89

    PubMed  CAS  Google Scholar 

  18. Gross GJ, Buck JD, Warltier DC, Hardman HF (1979). Beneficial action of bevantolol on subendocardial blood flow and contractile function in ischemic myocardium. J Cardiovasc Pharmacol 1:139–147

    Article  PubMed  CAS  Google Scholar 

  19. Buck JD, Gross GJ, Warltier DC, et al (1979). Comparative effects of cardioprotective versus non-cardioprotective beta blockade on subendocardial blood flow and contractile function in ischemic myocardium. Am J Cardiol 44:657–663

    Article  PubMed  CAS  Google Scholar 

  20. Grover GJ, Tierney MA, Weiss HR (1986). Beta adrenoceptor control of the microvascular reserve in rabbit myocardium. J Pharmacol Exp Ther 238:868–873

    PubMed  CAS  Google Scholar 

  21. Buck JD, Warltier DC, Hardman HF, Gross GJ (1981). Effects of sotalol and vagal stimulation on ischemic myocardial flow distribution in the canine heart. J Pharmacol Exper Ther 216:347–351

    PubMed  CAS  Google Scholar 

  22. Tasgal J, Vaughan Williams EM (1981). The effect of prolonged propranolol administration on myocardial transmural capillary density in young rabbits. J Physiol (London) 315:353–367

    CAS  Google Scholar 

  23. Reichhalter R, Lillie C, Kobinger W (1988). Effect of alinidine on survival and infarct size in rats with coronary artery occlusion. Eur J Pharmacol 157:75–81

    Article  PubMed  CAS  Google Scholar 

  24. Schulz R, Rose J, Skyschally A, Heusch G (1995). Bradycardic agent UL-FS 49 attenuates ischemic regional myocardial dysfunction and reduces infarct size in swine: comparison with beta-blocker atenolol. J Cardiovasc Pharmacol 25:216–228

    Article  PubMed  CAS  Google Scholar 

  25. Patel SR, Breall JA, Diver DJ, et al. (2000). Bradycardia is associated with development of coronary collateral vessels in humans. Cor Art Dis 11:467–472

    Article  CAS  Google Scholar 

  26. Tomanek RJ, Torry RJ (1994). Growth of the coronary vasculature in hypertrophy: mechanisms and model dependence. Cell Mol Biol 40:129–136

    PubMed  CAS  Google Scholar 

  27. Tomanek RJ (1990). Response of the coronary vasculature to myocardial hypertrophy. J Am Coll Cardiol 15:528–533

    Article  PubMed  CAS  Google Scholar 

  28. Batra S, Rakusan K, Campbell SE (1991). Geometry of capillary networks in hypertrophied heart. Microvasc Res 41:29–40

    Article  PubMed  CAS  Google Scholar 

  29. Mall G, Zimmer G, Baden S, Mattfeldt T (1990). Capillary neoformation in the rat heart – stereological studies on papillary muscles in hypertrophy and physiological growth. Basic Res Cardiol 85:531–540

    Article  PubMed  CAS  Google Scholar 

  30. Alyono D, Anderson RW, Parrish DG et al. (1986). Alterations of myocardial blood flow associated with experimental canine left ventricular hypertrophy secondary to valvular aortic stenosis. Circ Res 58:47–57

    PubMed  CAS  Google Scholar 

  31. Motz W, Strauer BE (1994). Therapy of hypertensive cardiac hypertrophy and impaired coronary microcirculation. J Cardiovasc Pharmacol 24(Suppl 1):S34-S38

    PubMed  CAS  Google Scholar 

  32. Aidonidis O, Brachmann J, Rizos I, et al. (1995). Electropharmacology of the bradycardic agents alinidine and zatebradine (UL-FS 49) in a conscious canine ventricular arrhythmia model of permanent coronary artery occlusion. Cardiovasc Drugs Ther 9:555–563

    Article  PubMed  CAS  Google Scholar 

  33. Rona G, Chappel CI, Balazs T, Gaundry R (1959). An infarct-like myocardial lesion and other toxic manifestations produced by isoproterenol in the rat. Arch Pathol 67:443–455

    CAS  Google Scholar 

  34. Raab W (1960). Key position of catecholamine in functional and degenerative cardiovascular pathology. Am J Cardiol 5:571–578

    Article  PubMed  CAS  Google Scholar 

  35. Schomig A, Haass M, Richardt G (1991). Catecholamine release and arrhythmias in acute myocardial ischaemia. Eur Heart J 12(Suppl F):38–47

    PubMed  Google Scholar 

  36. Brown MD, Hudlicka O (1988). Protective effect of long-term bradycardial pacing against catcholamine-induced myocardial damage in rabbit hearts. Circ Res 62:965–974

    PubMed  CAS  Google Scholar 

  37. Lei L, Zhou R, Zheng W, et al (2004). Bradycardia induces angiogenesis, increases coronary reserve and preserves function of the post-infarcted heart. Circulation 110:796–802

    Article  PubMed  Google Scholar 

  38. Van Kerckhoven R, van Veghel R, Saxena P, Schoemaker R (2004). Pharmacological therapy can increase capillary density in post-infarction remodeled rat hearts. Cardiovasc Res 61:620–629

    Article  PubMed  CAS  Google Scholar 

  39. Mulder P, Barbier S, Chagraoui A, et al. (2004). Long-term heart rate reduction induced by the selective I f current inhibitor ivabradine improves left ventricular function and intrinsic myocardial structure in congestive heart failure. Circulation 109:1674–1679

    Article  PubMed  CAS  Google Scholar 

  40. Wright AJA, Hudlicka O, Brown MD (1989). Beneficial effect of chronic bradycardial pacing on capillary growth and heart performance in volume overload heart hypertrophy. Circ Res 64:1205–1212

    PubMed  CAS  Google Scholar 

  41. White FC, Bloor CM, McKirnan MD, Carroll SM (1998). Exercise training in swine promotes growth of arteriolar bed and capillary angiogenesis in heart. J Appl Physiol 85:1160–1168

    PubMed  CAS  Google Scholar 

  42. Breisch EA, White FC, Nimmo LE, et al. (1986). Exercise-induced cardiac hypertrophy: a correlation of blood flow and microvasculature. J Appl Physiol 60:1259–1267

    PubMed  CAS  Google Scholar 

  43. Brown MD (2003) Exercise and coronary vascular remodelling in the healthy heart. Exp Physiol 88(5): 645–658

    Article  PubMed  Google Scholar 

  44. Hudlicka O, Wright AJA, Hoppeler H, Uhlmann E (1988). The effects of chronic bradycardial pacing on the oxidative capacity in rabbit hearts. Resp Physiol 72:1–12

    Article  CAS  Google Scholar 

  45. Mann G, Yudilevich DL (1979). Effect of bovine albumin on capillary permeability of the perfused rabbit heart to 22Na, 51CrEDTA and 57Co cyanocobalamin. Microvasc Res 18:280–287

    Article  PubMed  Google Scholar 

  46. Tomanek RJ, Sandra A, Zheng W, et al. (2001). Vascular endothelial growth factor and basic fibroblast growth factor differentially modulate early postnatal coronary angiogenesis. Circ Res 88:1135–1141

    Article  PubMed  CAS  Google Scholar 

  47. Schaper W, Ito W (1996). Molecular mechanisms of coronary collateral vessel growth. Circ Res 79:911–919

    PubMed  CAS  Google Scholar 

  48. Scarborough JE, Smith ML, Dommkovski PW, et al. (2002). Basic fibroblast factor is upregulated in hibernating myocardium. J Surg Res 107:119–123

    PubMed  CAS  Google Scholar 

  49. Xie Z, Gao M, Batra S, Koyama T. (1997a) Remodelling of capillary network in the left ventricular subendocardial tissues induced by intravenous vasopressin administration. Microcirculation 4:261–266

    PubMed  CAS  Google Scholar 

  50. Xie Z, Gao M, Koyama T (1997b). Effect of transient coronary occlusion on the capillary network in the left ventricle of rat. Jap J Physiol 47:537–543

    Article  CAS  Google Scholar 

  51. Xie Z, Gao M, Batra S, Koyama T (1997c). The capillarity of left ventricular tissue of rats subjected to coronary artery occlusion. Cardiovasc Res 33:671–676

    Article  PubMed  CAS  Google Scholar 

  52. Hudlicka O, Brown MD, Walter H, et al. (1995). Factors involved in capillary growth in the heart. Mol Cell Biochem 147:57–68

    Article  PubMed  CAS  Google Scholar 

  53. Li J, Hampton T, Morgan JP, Simons M (1997). Stretch induced VEGF expression in the heart. J Clin Invest 100:18–24

    Article  PubMed  CAS  Google Scholar 

  54. Zheng W, Seftor EA, Meiniger CJ, et al. (2001). Mechanism of coronary angiogenesis in response to stretch: role of VEGF and TGFbeta. Am J Physiol 280: H 909–917

    CAS  Google Scholar 

  55. Tillmans H, Ikeda S, Hansen H, et al. (1974). Microcirculation in the ventricle of the dog and turtle. Circ Res 34:561–569

    PubMed  Google Scholar 

  56. Hudlicka O (1994). Mechanical factors involved in the growth of the heart and its blood vessels. Cell Mol Biol Res 40:143–152

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. M. Milkiewicz for the cell proliferation studies, Mrs. Debbie Ruston for technical assistance with histology, Dr. S. Egginton for measurement of blood oxygen content, and Mr. Paul Townsend for assistance with pig surgery.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Brown.

Additional information

Correspondence to: Dr. M.D. Brown, School of Sport and Exercise Sciences, University of Birmingham, Birmingham B 15 2TT, UK. Tel: +44-121-4144268; Fax: +44-121-4144121; E-mail: m.d.brown@bham.ac.uk

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, M.D., Davies, M.K. & Hudlicka, O. Angiogenesis in ischaemic and hypertrophic hearts induced by long-term bradycardia. Angiogenesis 8, 253–262 (2005). https://doi.org/10.1007/s10456-005-9012-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-005-9012-y

Key words

Navigation