Skip to main content
Log in

\(L^2\)-Poisson integral representations of eigensections of invariant differential operators on a homogeneous line bundle over the complex Grassmann manifold \(SU(r,r+b)/S( U(r)\times U(r+b))\)

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

Let \(E_l=G\times _K{{\mathbb {C}}}\) be the associated homogeneous line bundle to a one-dimensional \(K\)-representation \(\tau _l\) (\(l\in {{\mathbb {Z}}}\)) over the noncompact complex Grassmann manifold \(G/K\); \(G=SU(r,r+b)\) and \(K=S(U(r)\times U(r+b))\). Let \({\mathbb {D}}(E_l)\) be the algebra of \(G\)-invariant differential operators on \(E_l\). Let \(\lambda \) be a real and regular spectral parameter in \({\mathfrak {a}}^*\), and let \(F\) be a solution of the system differential equations on \(E_l\): \(DF=\chi _{\lambda ,l}(D)F\) for all \(D\) in \({\mathbb {D}}(E_l)\). In this article, we obtain a necessary and sufficient condition for this \(F\) to be represented by the Poisson transform of \(f\) in the section space \(L^2(K\times _M {{\mathbb {C}}})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anker, J.P.: A basis inequality for scattering theory for Riemannian symmetric spaces of the noncompact type. Am. J. Math. 113(3), 391–398 (1991)

    Article  MathSciNet  Google Scholar 

  2. Bray, W.O.: Aspects of Harmonic Analysis on Real Hyperbolic Spaces, Fourier Analysis. Lecture Notes in Pure and Appl. Math., vol. 157. Dekker, New York (1994)

  3. Boussejra, A., Intissar, A.: Caractérisation des integrales de Poisson-Szego de \(L^{2}(\partial B^{n})\) dans la boule de Bergman \(B^n\). \(n\ge 2\), C. R. Acad. Sci. 318 (1994)

  4. Boussejra, A., Intissar, A.: \(L^{2}\)-concrete spectral analysis of the invariant Laplacian in the unit complex ball. J. Funct. Anal. 160, 115–140 (1998)

    Article  MathSciNet  Google Scholar 

  5. Boussejra, A., Sami, H.: Characterization of the \(L^{p}\)-range of the Poisson transform in Hyperbolic spaces. J. Lie Theory. 12, 1–14 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Boussejra, A., Ourchane, N.: Characterization of the \(L^p\)-range of the Poisson transform on the octonionic hyperbolic plane. J. Lie. Theory 28(3), 805–828 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Cailliez, J., Oberdoerffer, J.: Les sous-groupes paraboliques de \(SU(p,q)\) et \(Sp(n{\mathbb{R}})\) et applications à l’étude des représentations. Lecture Notes in Math., vol. 739, Springer Berlin Heidelberg New York (1979)

  8. Camporesi, R.: The Helgason–Fourier transform for homogeneous vector bundles over Riemannian symmetric spaces. Pac. J. Math. 179(2), 263–300 (1997)

    Article  MathSciNet  Google Scholar 

  9. Harish-Chandra: Spherical functions on semisimple Lie Groups. I. Am. J. Math. 80(2), 241–310 (1958)

    Article  MathSciNet  Google Scholar 

  10. Harish-Chandra: Spherical functions on a semisimple Lie group. II. Am. J. Math. 80, 553–613 (1958)

    Article  MathSciNet  Google Scholar 

  11. Heckman, G., Schlichtkrull, H.: Harmonic Analysis and Special Functions on Symmetric Spaces. Academic Press, London (1994)

    MATH  Google Scholar 

  12. Helgason, S.: A duality for symmetric spaces with applications to group representations. Adv. Math. 5, 1–154 (1970)

    Article  MathSciNet  Google Scholar 

  13. Ionescu, A.D.: On the Poisson transform on symmetric spaces of rank one. J. Funct. Anal. 174(2), 513–523 (2000)

    Article  MathSciNet  Google Scholar 

  14. Kaizuka, K.: A characterization of the \(L^2\)-range of the Poisson transform related to Strichartz conjecture on symmetric spaces of noncompact type. Adv. Math. 303, 464–501 (2016)

    Article  MathSciNet  Google Scholar 

  15. Koornwinder, T.: A new proof of a Paley–Wiener type theorem for the Jacobi transform. Arkiv Mat. 13(1–2), 145–159 (1975)

    Article  MathSciNet  Google Scholar 

  16. Kumar, P.: Fourier restriction theorem and characterization of weak \(L^2\)-eigenfunctions of the Laplace-Beltrami. J. Funct. Anal. 266, 5584–5597 (2014)

    Article  MathSciNet  Google Scholar 

  17. Kumar, P., Ray, S.K., Sarkar, R.P.: Characterization of almost \(L^{p}\)-eigenfunctions of the Laplace–Beltrami operator. Trans. Am. Math. Soc. 366, 3191–3225 (2014)

    Article  Google Scholar 

  18. Shimeno, N.: Eigenspaces of invariant differential operators on a homogeneous line bundle on a Riemannian symmetric space. J. Fac. Sci. Univ. Tokyo, Sect. IA, Math. 37, 201–234 (1990)

    MathSciNet  MATH  Google Scholar 

  19. Shimeno, N.: The Plancherel formula for spherical functions with a one-dimensional \(K\)-type on a simply connected lie group of Hermitian type. J. Funct. Anal. 121, 330–384 (1994)

    Article  MathSciNet  Google Scholar 

  20. Shimeno, N.: A formula for the hypergeometric function of type \(BC_n\). Pac. J. Math. 236(1), 105–118 (2008)

    Article  MathSciNet  Google Scholar 

  21. Strichartz, R.S.: Harmonic analysis as spectral theory of Laplacians. J. Funct. Anal. 87, 51–148 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for valuable comments which helped to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhamid Boussejra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We first review some facts on Jacobi functions. We refer to [17] for more details.

For \(\alpha ,\beta , \lambda \in {{\mathbb {C}}}\), \(\alpha \ne -1-2,\ldots \), the Jacobi functions of the first kind \(\displaystyle \phi ^{\alpha ,\beta }_\lambda (t)\) is the solution of the differential equation

$$\begin{aligned} \frac{d^2}{dt^2}\phi _\lambda ^{\alpha ,\beta }+[2(\alpha +1)\coth t+(2\beta +1)\tanh t]\frac{d}{dt}\,\phi _\lambda ^{\alpha ,\beta }=-(\lambda ^2+(\alpha +\beta +1)^2)\phi _\lambda ^{\alpha ,\beta },\nonumber \\ \end{aligned}$$
(7.1)

which satisfied \(\phi _\lambda ^{\alpha ,\beta }(0)=1 \) and \(\frac{d}{dt}\phi _\lambda ^{\alpha ,\beta }(t)_{\mid t=0} =0 \). The Jacobi functions can be expressed by the Gauss hypergeometric functions as

$$\begin{aligned} \phi ^{(\alpha ,\beta )}_\lambda (t)=F\left( \frac{i\lambda +\alpha +\beta }{2},\frac{-i\lambda +\alpha +\beta }{2}; \alpha +1; -\sinh ^2 t\right) . \end{aligned}$$

For \(\lambda \notin -i{{\mathbb {N}}}\), another solution \(\Phi _\mu ^{\alpha ,\beta }\) of (7.1) such that

$$\begin{aligned} \Phi _\mu ^{\alpha ,\beta }(t)=\mathrm{e}^{(i\mu -\alpha -\beta -1)t}(1+\circ (1)) \quad \textit{as} \,\, t\rightarrow +\infty , \end{aligned}$$
(7.2)

is given by (see [17, (2.4)]

$$\begin{aligned} \Phi _\lambda ^{\alpha ,\beta }(t)=(2\sinh t)^{i\lambda -\alpha -\beta -1}F\left( \frac{-i\lambda +\alpha +\beta +1}{2},\frac{-i\lambda -\alpha +\beta +1}{2}, 1-i\lambda ; -(\sinh t)^{-2} \right) . \end{aligned}$$

For \(\lambda \notin {{\mathbb {Z}}}\), \(\Phi _\lambda ^{\alpha ,\beta }\) and \(\Phi _{-\lambda }^{\alpha ,\beta } \) are linearly independent solutions of (7.1), so we have

$$\begin{aligned} \phi _\lambda ^{\alpha ,\beta }(t)=c_{\alpha ,\beta }(\lambda )\Phi _\lambda ^{\alpha ,\beta }(t)+c_{\alpha ,\beta }(-\lambda )\Phi _{-\lambda }^{\alpha ,\beta }(t), \end{aligned}$$

where

$$\begin{aligned} c_{\alpha ,\beta }(\lambda )=\frac{2^{\alpha +\beta +1-i\lambda }\Gamma (\alpha +1)\Gamma (i\lambda )}{\Gamma \left( \frac{\alpha +\beta +1+i\lambda }{2}\right) \Gamma \left( \frac{\alpha -\beta +1+i\lambda }{2}\right) }. \end{aligned}$$

We shall also need some estimates on the Jacobi functions from [15], but which will be stated here for \(\alpha ,\beta , \lambda \in {{\mathbb {R}}}, \alpha >-\frac{1}{2}\).

Lemma 7.1

[15] Assume \(\alpha ,\beta \) with \(\alpha >-\frac{1}{2}\).

  1. (i)

    For each and \(\delta >0\), there exists a positive constant \(C\) such that for all \(t\ge \delta \) and all \(\lambda \in {{\mathbb {R}}}\)

    $$\begin{aligned} \mid \Phi _{\lambda }^{\alpha ,\beta }(t)\mid \le C\mathrm{e}^{-(\alpha +\beta +1)t}. \end{aligned}$$
    (7.3)
  2. (ii)

    There exists a positive constant \(C\) such that for all \(t\ge 0\) and all \(\lambda \in {{\mathbb {R}}}\)

    $$\begin{aligned} \mid \frac{d^n}{dt^n}\phi _\lambda ^{\alpha ,\beta }(t)\mid \le C(1+\mid \lambda \mid )^n(1+t)\mathrm{e}^{-(\alpha +\beta +1)t}. \end{aligned}$$
    (7.4)

Lemma A1

For \(\alpha ,\beta \in {\mathbb {R}}\) with \(\alpha >-\frac{1}{2}\) and \(n\in {\mathbb {N}}\), there exists a positive constant \(C\) such that for all \(t\ge 0\) and \(\lambda \in {{\mathbb {R}}}{\setminus }\{0\}\)

$$\begin{aligned} \mid \lambda \dfrac{d^{n}}{dt^{n}}\phi _{\lambda }^{\alpha ,\beta }(t)\mid \le C(1+\lambda ^{2})^{n+1}e^{-(\alpha +\beta +1) t} \end{aligned}$$

Proof

Consider first the case \(n=0\). Since \(\alpha >-\frac{1}{2}\) it follows from the Stirling formula that there exists a positive constant \(C\) such that for all \(\lambda \in {{\mathbb {R}}}{\setminus }\{0\}\) \(\displaystyle \mid \lambda c(\lambda )\mid \le C(1+\mid \lambda \mid )\).

It follows from (7.3) that there exists \(C>0\) such that for all \(t\ge 1\)

$$\begin{aligned} \mid \lambda \phi _\lambda ^{\alpha ,\beta }(t)\mid\le & {} C(1+\mid \lambda \mid )\mathrm{e}^{-(\alpha +\beta +1)t}\\\le & {} 2C(1+\lambda ^{2})\mathrm{e}^{-(\alpha +\beta +1)t}. \end{aligned}$$

We also have from (7.4) that there exists \(C>0\) such that for all \(t\le 1\)

$$\begin{aligned} \mid \lambda \phi _\lambda ^{\alpha ,\beta }(t)\mid\le & {} C(1+\mid \lambda \mid )\mathrm{e}^{-(\alpha +\beta +1)t}\\\le & {} 2C(1+\lambda ^{2})\mathrm{e}^{-(\alpha +\beta +1)t}. \end{aligned}$$

Combining these inequalities, the lemma follows for \(n=0\).

We prove the case \(n\ge 1\) by induction with respect to \(n\) using the formula

$$\begin{aligned} \dfrac{d^{n}}{dt^{n}}\phi ^{\alpha ,\beta }_{\lambda }(t)=\dfrac{-\Gamma (\alpha +1)}{4}((\alpha +\beta +1)^{2}+\lambda ^{2})\sum _{k=0}^{n-1}2^{k}\dfrac{d^{k}}{dt^{k}}(\sinh (2t))\dfrac{d^{n-1-k}}{dt^{n-1-k}}\phi ^{\alpha +1,\beta +1}_{\lambda }(t). \end{aligned}$$

This last formula follows from the identity obtained by a simple calculation:

$$\begin{aligned} \dfrac{d}{dt}\phi ^{\alpha ,\beta }_{\lambda }(t)= & {} \dfrac{-\Gamma (\alpha +1)}{4}((\alpha +\beta +1)^{2}+\lambda ^{2})\sinh (2t)\phi ^{\alpha +1,\beta +1}_{\lambda }(t). \end{aligned}$$

\(\square \)

Lemma 7.2

Let \(f\) be a \({{\mathbb {C}}}\)-valued function on \({{\mathbb {R}}}\) whose \(n\)th-order derivative is continuous. Assume \(f(t_1)=f(t_2)=\cdots =f(t_n)=0\), \(t_1,..,t_n\) being real numbers such that \(t_{1}>t_{2}>\cdots > t_{n}\). Then for any \(t\in {{\mathbb {R}}}\), we have

$$\begin{aligned} |\dfrac{f(t)}{\prod \limits _{i=1}^{n}(t-t_{i})}|\le & {} \sup _{s\in [\min (t,t_{n}),\max (t,t_{1})]}|f^{(n)}(s)|. \end{aligned}$$

Proof

For \(n=1\), the result is obvious. We prove the case \(n\ge 1\) by induction on \(n\) using the fundamental theorem of calculus.\(\square \)

Recall that by the Cartan decomposition \(G=K\exp {\mathfrak {p}}\) each \(g\in G\) can be uniquely written \(\displaystyle g=\pi _0(g)\exp X(g)\) where \(\pi _0(g)\in K\) and \(X(g)\in {\mathfrak {p}}\). For \(g=\kappa _{1}(g)\mathrm{e}^{A^+(g)})\kappa _{2}(g)\) we know that \(\pi _0(g)=\kappa _{1}(g)\kappa _{2}(g)\).

Lemma 7.3

Let \(g,h\in SU(r,r+b)\) and \(H_T\in {\mathfrak {a}}^+\). Then

$$\begin{aligned}&\displaystyle \kappa _1(h^{-1}g)\kappa _2(h^{-1}g)=\kappa _1(h^{-1}\kappa _1(g)\mathrm{e}^{A^+(g)})\kappa _2(h^{-1}\kappa _1(g)\mathrm{e}^{A^+(g)})\kappa _2(g). \end{aligned}$$
(7.5)
$$\begin{aligned}&\lim _{R\rightarrow +\infty }\tau _l(\kappa _{1}(g\mathrm{e}^{RH_T})\kappa _{2}(g\mathrm{e}^{RH_T}))=\tau _l(\kappa (g)) \end{aligned}$$
(7.6)

Proof

The identity (7.5) is obvious.

We write \(g=\kappa (g)e^{H(g)}n(g)\) with respect to the Iwasawa decomposition \(G=KAN\). Then we have

$$\begin{aligned} \pi _{0}(g\mathrm{e}^{RH_{T}})=\kappa (g)\pi _{0}(e^{H(g)}n(g)\mathrm{e}^{RH_T}) \qquad \forall R>0. \end{aligned}$$

Therefore, it is enough to prove

$$\begin{aligned} \lim _{R\rightarrow +\infty }\tau _l(\pi _0(\mathrm{e}^{H(g)}n(g)\mathrm{e}^{RH_T}))=1. \end{aligned}$$

We first observe that if \(g=\begin{pmatrix} A&{}B \\ C&{}D\\ \end{pmatrix} \), then

$$\begin{aligned} \tau _l(\pi _0(g))=\left( \frac{\det D}{\mid \det D\mid }\right) ^{-l} \end{aligned}$$
(7.7)

We write \(e^{-RH_T}n(g)e^{RH_T}\) in \(r\times r+b\)-block notation as

$$\begin{aligned} e^{-RH_T}n(g)e^{RH_T}=\begin{pmatrix} A_{1}(R)&{}B_{1}(R) \\ A_{2}(R)&{}B_{2}(R)\\ \end{pmatrix}. \end{aligned}$$

Then, a straightforward computation shows

$$\begin{aligned}&\tau _{l}(\pi _{0}(e^{H(g)+RH_T}e^{-RH_T}n(g)e^{RH_T}))\\&\quad = \left( \dfrac{det\left( \begin{pmatrix}\tanh (RT+S)\\ 0_{b\times r} \end{pmatrix}B_{1}(R)+B_{2}(R)\right) }{|det(\begin{pmatrix}\tanh (RT+S)\\ 0_{b\times r} \end{pmatrix}B_{1}(R)+B_{2}(R)|}\right) ^{-l}, \quad H(g)=H_S \end{aligned}$$

Since \(\lim _{R\rightarrow +\infty }\mathrm{e}^{-RH_T}n(g)\mathrm{e}^{RH_T}=I_{2r+b}\), we get

$$\begin{aligned} \lim _{R\rightarrow +\infty }\tau _{l}(\pi _{0}(e^{H(g)+RH_T})=1, \end{aligned}$$

as was to be shown. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boussejra, A., Imesmad, N. & Chaib, A.O. \(L^2\)-Poisson integral representations of eigensections of invariant differential operators on a homogeneous line bundle over the complex Grassmann manifold \(SU(r,r+b)/S( U(r)\times U(r+b))\). Ann Glob Anal Geom 61, 399–426 (2022). https://doi.org/10.1007/s10455-021-09819-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-021-09819-9

Keywords

Navigation