Skip to main content
Log in

The anomaly flow on nilmanifolds

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We study the Anomaly flow on 2-step nilmanifolds with respect to any Hermitian connection in the Gauduchon line. In the case of flat holomorphic bundle, the general solution to the Anomaly flow is given for any initial invariant Hermitian metric. The solutions depend on two constants \(K_1\) and \(K_2\), and we study the qualitative behaviour of the Anomaly flow in terms of their signs, as well as the convergence in Gromov–Hausdorff topology. The sign of \(K_1\) is related to the conformal invariant introduced by Fu, Wang and Wu. In the non-flat case, we find the general evolution equations of the Anomaly flow under certain initial assumptions. This allows us to detect non-flat solutions to the Hull-Strominger-Ivanov system on a concrete nilmanifold, which appear as stationary points of the Anomaly flow with respect to the Strominger-Bismut connection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreas, B., Gracía-Fernández, M.: Heterotic non-Kähler geometries via polystable bundles on Calabi-Yau threefolds. J. Geom. Phys. 62, 183–188 (2012)

    Article  MathSciNet  Google Scholar 

  2. Andreas, B., Gracía-Fernández, M.: Solutions of the Strominger system via stable bundles on Calabi-Yau threefolds. Commun. Math. Phys. 315, 153–168 (2012)

    Article  MathSciNet  Google Scholar 

  3. Arroyo, R.M., Lafuente, R.A.: The long-time behavior of the homogeneous pluriclosed flow. Proc. Lon. Math. Soc. 3, 1–24 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Ceballos, M., Otal, A., Ugarte, L., Villacampa, R.: Invariant complex structures on 6-nilmanifolds: classification, Frölicher spectral sequence and special Hermitian metrics. J. Geom. Anal. 26, 252–286 (2016)

    Article  MathSciNet  Google Scholar 

  5. Enrietti, N., Fino, A., Vezzoni, L.: The pluriclosed flow on nilmanifolds and tamed symplectic forms. J. Geom. Anal. 25, 883–909 (2015)

    Article  MathSciNet  Google Scholar 

  6. Fei, T.: A construction of non-Kähler Calabi-Yau manifolds and new solutions to the Strominger system. Adv. Math. 302, 529–550 (2016)

    Article  MathSciNet  Google Scholar 

  7. Fei, T., Huang, Z., Picard, S.: The Anomaly flow over Riemannian surfaces. Int. Math. Res. Not. (2019). https://doi.org/10.1093/imrn/rnz076

    Article  Google Scholar 

  8. Fei, T., Huang, Z., Picard, S.: A construction of infinitely many solutions to the Strominger system. J. Differential Geom. 117 (1), 23–39 (2021)

  9. Fei, T., Phong, D.H.: Unification of the Kähler-Ricci and Anomaly flows. arXiv:1905.02274 [mathDG], (2019)

  10. Fei, T., Picard, S.: Anomaly Flow and T-Duality. To appear in Pure Appl. Math. Q. (2019)

  11. Fei, T., Yau, S.-T.: Invariant solutions to the Strominger system on complex lie groups and their quotients. Commun. Math. Phys. 338, 1183–1195 (2015)

    Article  MathSciNet  Google Scholar 

  12. Fernández, M., Ivanov, S., Ugarte, L., Vassilev, D.: Non-Kähler heterotic string solutions with non-zero fluxes and non-constant dilaton. J. High Energy Phys. 6, 1–23 (2014)

    MATH  Google Scholar 

  13. Fernández, M., Ivanov, S., Ugarte, L., Villacampa, R.: Non-Kähler heterotic string compactifications with non-zero fluxes and constant dilaton. Commun. Math. Phys. 288, 677–697 (2009)

    Article  Google Scholar 

  14. Fino, A., Grantcharov, G., Vezzoni, L.: Solutions to the Hull-Strominger system with torus symmetry. arXiv:1901.10322 [mathDG], (2019)

  15. Fino, A., Parton, M., Salamon, S.: Families of strong KT structures in six dimensions. Comment. Math. Helv. 79, 317–340 (2004)

    Article  MathSciNet  Google Scholar 

  16. Fino, A., Ugarte, L.: On generalized Gauduchon metrics. Proc. Edinburgh Math. Soc. 56, 733–753 (2013)

    Article  MathSciNet  Google Scholar 

  17. Fu, J., Wang, Z., Wu, D.: Semilinear equations, the \(\gamma _k\) function, and generalized Gauduchon metrics. J. Eur. Math. Soc. 15, 659–680 (2011)

    Article  Google Scholar 

  18. Fu, J., Yau, S.-T.: A Monge-Ampère type equation motivated by string theory. Comm. Anal. Geom. 15, 29–76 (2007)

    Article  MathSciNet  Google Scholar 

  19. Fu, J., Yau, S.-T.: The theory of superstring with flux on non-Kähler manifolds and the complex Monge-Ampère equation. J. Diff. Geom. 78, 369–428 (2008)

    MATH  Google Scholar 

  20. García-Fernández, M.: Lectures on the Strominger system, Travaux Mathématiques, special issue: School GEOQUANT at the ICMAT, vol. XXIV 74, 7–61 (2016)

    MathSciNet  Google Scholar 

  21. Gauduchon, P.: Hermitian connections and Dirac operators. Boll. Un. Mat. Ital. B 11(2), 257–288 (1997)

    MathSciNet  MATH  Google Scholar 

  22. Hull, C.: Compactifications of the heterotic superstring. Phys. Lett. B 178, 357–364 (1986)

    Article  MathSciNet  Google Scholar 

  23. Ivanov, S.: Heterotic supersymmetry, anomaly cancellation and equations of motion. Phys. Lett. B 685, 190–196 (2010)

    Article  MathSciNet  Google Scholar 

  24. Ivanov, S., Papadopoulos, G.: Vanishing theorems on \((\ell \vert k)\)-strong Kähler manifolds with torsion. Adv. Math. 237, 147–164 (2013)

    Article  MathSciNet  Google Scholar 

  25. Lafuente, R., Pujia, M., Vezzoni, L.: Hermitian curvature flow on unimodular Lie groups and static invariant metrics. Trans. Am. Math. Soc. 373(6), 3967–3993 (2020)

  26. Latorre, A., Ugarte, L., Villacampa, R.: On generalized Gauduchon nilmanifolds. Diff. Geom. Appl. Part (A) 54, 150–164 (2017)

    Article  MathSciNet  Google Scholar 

  27. Li, J., Yau, S.-T.: The existence of supersymmetric string theory with torsion. J. Diff. Geom. 70, 143–181 (2005)

    MathSciNet  MATH  Google Scholar 

  28. Otal, A., Ugarte, L., Villacampa, R.: Invariant solutions to the Strominger system and the heterotic equations of motion. Nuclear Phys. B 920, 442–474 (2017)

    Article  MathSciNet  Google Scholar 

  29. Pediconi, F., Pujia, M.: Hermitian curvature flow on complex locally homogeneous surfaces. Annali di Matematica 200, 815–844 (2019)

    Article  MathSciNet  Google Scholar 

  30. Phong, D.H., Picard, S., Zhang, X.: Geometric flows and Strominger systems. Math. Z. 288, 101–113 (2018)

    Article  MathSciNet  Google Scholar 

  31. Phong, D.H., Picard, S., Zhang, X.: Anomaly flows. Comm. Anal. Geom. 26, 955–1008 (2018)

    Article  MathSciNet  Google Scholar 

  32. Phong, D.H., Picard, S., Zhang, X.: The anomaly flow and the Fu-Yau equation. Ann. PDE 4(2), 13–60 (2018)

    Article  MathSciNet  Google Scholar 

  33. Phong, D.H., Picard, S., Zhang, X.: New curvature flows in complex geometry. Surveys in Differential Geometry 2017. Celebrating the 50th anniversary of the Journal of Differential Geometry, 331–364, Surv. Differ. Geom., 22, Int. Press, Somerville, MA, (2018)

  34. Phong, D.H., Picard, S., Zhang, X.: The Anomaly flow on unimodular Lie groups. Contemp. Math. 735, 217–237 (2019)

    Article  MathSciNet  Google Scholar 

  35. Phong, D.H., Picard, S., Zhang, X.: A flow of conformally balanced metrics with Kähler fixed points. Math. Ann. 374(3–4), 2005–2040 (2019)

    Article  MathSciNet  Google Scholar 

  36. Pujia, M.: Expanding solitons to the Hermitian curvature flow on complex Lie groups. Diff. Geom. Appl. 64, 201–216 (2019)

    Article  MathSciNet  Google Scholar 

  37. Pujia, M.: Positive Hermitian curvature flow on complex 2-step nilpotent Lie groups. Manuscripta Math. (2020). https://doi.org/10.1007/s00229-020-01251-w

  38. Pujia, M.: The Hull-Strominger system and the Anomaly flow on a class of solvmanifolds. arXiv:2103.09854 [math.DG], (2021)

  39. Pujia, M., Vezzoni, L.: A remark on the Bismut-Ricci form on 2-step nilmanifolds. C.R. Acad. Sci. Paris Ser. I 356, 222–226 (2018)

    Article  MathSciNet  Google Scholar 

  40. Rong, X.: Convergence and collapsing theorems in Riemannian geometry. Handbook of Geometric Analysis, No. 2, Advanced Lectures in Mathematics, Int. Press, Somerville, MA, 193–299 (2010)

  41. Streets, J., Tian, G.: Hermitian curvature flow. J. Eur. Math. Soc. 13, 601–634 (2011)

    Article  MathSciNet  Google Scholar 

  42. Strominger, A.: Superstrings with torsion. Nucl. Phys. B 274(2), 253–284 (1986)

    Article  MathSciNet  Google Scholar 

  43. Ugarte, L.: Hermitian structures on six-dimensional nilmanifolds. Transf. Groups 12, 175–202 (2007)

    Article  MathSciNet  Google Scholar 

  44. Ugarte, L., Villacampa, R.: Non-nilpotent complex geometry of nilmanifolds and heterotic supersymmetry. Asian J. Math. 2, 229–246 (2018)

    MathSciNet  MATH  Google Scholar 

  45. Ugarte, L., Villacampa, R.: Balanced Hermitian geometry on 6-dimensional nilmanifolds. Forum Math. 27, 1025–1070 (2015)

    Article  MathSciNet  Google Scholar 

  46. Ustinovskiy, Y.: Hermitian curvature flow on complex homogeneous manifolds. Ann. Scuola Norm. Sup. Pisa CI. Sci. (2019) (to appear)

Download references

Acknowledgements

The authors would like to thank the anonymous referees for several useful suggestions, which improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattia Pujia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first-named author was partially supported by GN.S.A.G.A. of I.N.d.A.M. The second-named author was supported by the projects MTM2017-85649-P (AEI/FEDER, UE), and E22-20R “Álgebra y Geometría” (Gobierno de Aragón/FEDER).

Appendices

Appendix A

In this Appendix we provide the curvature forms for a connection \(\nabla ^\tau\) in the Gauduchon family given any left-invariant metric \(\omega\).

For the computation of the curvature forms we use (22) with respect to the adapted basis \(\{e^l\}_{l=1}^6\) found in Proposition 2.1, together with the connection 1-forms \((\sigma ^{\tau })^i_j\) obtained in Proposition 2.3.

We first notice that the 2-forms \((\rm{Rm}^{\tau })^i_j\) satisfy the following relations:

$$\begin{aligned} \begin{aligned}&({\rm{Rm}}^{\tau })^2_3 = - ({\rm{Rm}}^{\tau })^1_4\,, \quad (\rm{Rm}^{\tau })^2_4 = (\rm{Rm}^{\tau })^1_3\,,\quad (\rm{Rm}^{\tau })^2_5 = - (\rm{Rm}^{\tau })^1_6\,,\\&(\rm{Rm}^{\tau })^2_6 = (\rm{Rm}^{\tau })^1_5\,,\quad(\rm{Rm}^{\tau })^4_5 = - (\rm{Rm}^{\tau })^3_6\,, \quad (\rm{Rm}^{\tau })^4_6 = (\rm{Rm}^{\tau })^3_5\,. \end{aligned} \end{aligned}$$

Next, we give the explicit expression of the 2-forms \(\tfrac{2r_e^4 \Delta _e^2}{k_e^2} ({\rm{Rm}}^{\tau })^i_j\), where \(\Delta _e:=\sqrt{r_e^2s_e^2-|u_{e}|^2}\), for \((i,j)=\{(1,2), (1,3), (1,4), (1,5), (1,6), (3,4), (3,5), (3,6), (5,6)\}\)

$$\begin{aligned} \tfrac{2r_e^4 \Delta _e^2}{k_e^2} (\rm{Rm}^{\tau })^1_2 =&- {\scriptstyle (\tau ^2-2\tau +5) \Delta _e^2}\, e^{12} +{\scriptstyle (\tau ^2-2\tau +5)u_{e1} \Delta _e}\, (e^{13}+e^{24})\\&+ {\scriptstyle \big ( (\tau ^2-2\tau +5)u_{e2} - \big (\rho (\tau -1)(\tau +3)+\lambda (\tau ^2+3)\big ) r_e^2\big ) \Delta _e}\, e^{14}\\&- {\scriptstyle \big ( (\tau ^2-2\tau +5)u_{e2} + \big ( \rho (\tau -1)(\tau +3)-\lambda (\tau ^2+3) \big ) r_e^2\big ) \Delta _e}\, e^{23}\\&- {\scriptstyle \big ( (\tau ^2-2\tau +5) |u_{e}|^2 - 2 \lambda (\tau ^2+3) u_{e2} r_e^2 - (\rho (\tau -1)^2 - \lambda ^2 (\tau +1)^2 + 4 x (\tau -1) ) r_e^4 \big )}\, e^{34}\\&- {\scriptstyle \lambda (\tau -1)^2 \big (\lambda r_e^2-2 u_{e2}\big ) r_e^2}\, e^{56} \,,\end{aligned}$$
$$\begin{aligned}\tfrac{2r_e^4 \Delta _e^2}{k_e^2} (\rm{Rm}^{\tau })^1_3 =&\ {\scriptstyle (\tau ^2-2\tau +5) u_{e1} \Delta _e}\, e^{12} \\&-{\scriptstyle \big [ (\tau ^2-2\tau +5) u_{e1}^2 + \frac{1}{2} \big ( \rho (\tau -1)^2 -2 \lambda ^2 (\tau -1)- \rho \lambda (\tau -1) (\tau +3) + x (\tau +1)^2 \big ) r_e^4 \big ] }\, e^{13}\\&-{\scriptstyle \big [ (\tau ^2-2\tau +5) u_{e1} u_{e2} - \big ( \rho (\tau -1) (\tau +3)+\lambda (\tau ^2+3) \big ) u_{e1} r_e^2 + \frac{y}{2} (\tau +1)^2 r_e^4 \big ]} \, e^{14}\\&+{\scriptstyle \big [ (\tau ^2-2\tau +5) u_{e1} u_{e2} + \big ( \rho (\tau -1) (\tau +3)-\lambda (\tau ^2+3) \big ) u_{e1} r_e^2 + \frac{y}{2} (\tau +1)^2 r_e^4 \big ] }\, e^{23}\\&-{\scriptstyle \big [ (\tau ^2-2\tau +5) u_{e1}^2 + \frac{1}{2} \big ( \rho (\tau -1)^2 -2 \lambda ^2 (\tau -1) + \rho \lambda (\tau -1) (\tau +3) + x (\tau +1)^2 \big ) r_e^4 \big ]} \, e^{24}\\&+{\scriptstyle \frac{1}{\Delta _e} \big [(\tau ^2-2\tau +5) |u_e|^2 u_{e1} - 2 \lambda (\tau ^2+3) u_{e1} u_{e2} r_e^2} \\&\quad {\scriptstyle +\big ( \lambda ^2 (\tau ^2+3) u_{e1} + x (\tau ^2-2\tau +5) u_{e1} + y (\tau +1)^2 u_{e2} \big ) r_e^4 - \lambda y (\tau ^2+3) r_e^6 \big ]} \, e^{34}\\&+ {\scriptstyle \frac{1}{\Delta _e} \, (\tau -1)^2 \big (\lambda r_e^2-2 u_{e2} \big ) \big (\lambda u_{e1} - y r_e^2 \big ) r_e^2 }\, e^{56} \,,\end{aligned}$$
$$\begin{aligned} \tfrac{2r_e^4 \Delta _e^2}{k_e^2} ({\rm{Rm}}^{\tau })^1_4 =&{\scriptstyle \big ( (\tau ^2-2\tau +5)u_{e2} + 2 \lambda (\tau -1) r_e^2\big ) \Delta _e}\, e^{12}\\&-{\scriptstyle \big [ (\tau ^2-2\tau +5) u_{e1} u_{e2} +2\lambda (\tau -1) u_{e1} r_e^2 - \frac{y}{2} (\tau +1)^2 r_e^4 \big ]} \, (e^{13}+e^{24})\\&-{\scriptstyle \big [ (\tau ^2-2\tau +5) u_{e2}^2 - \big ( \rho (\tau -1) (\tau +3)+\lambda (\tau ^2-2\tau +5) \big ) u_{e2} r_e^2 } \\&\quad {\scriptstyle + \frac{1}{2} \big ( \rho (\tau -1)^2 -2 \lambda ^2 (\tau -1) + \rho \lambda (\tau -1) (\tau +3) + x (\tau +1)^2 \big ) r_e^4 \big ]} \, e^{14}\\&+{\scriptstyle \big [ (\tau ^2-2\tau +5) u_{e2}^2 + \big ( \rho (\tau -1) (\tau +3)-\lambda (\tau ^2-2\tau +5) \big ) u_{e2} r_e^2 } \\&\quad {\scriptstyle + \frac{1}{2} \big ( \rho (\tau -1)^2 -2 \lambda ^2 (\tau -1) - \rho \lambda (\tau -1) (\tau +3) + x (\tau +1)^2 \big ) r_e^4 \big ] }\, e^{23}\\&+{\scriptstyle \frac{1}{\Delta _e} \big [(\tau ^2-2\tau +5) |u_e|^2 u_{e2} + 2 \lambda \big ( (\tau -1) u_{e1}^2 - (\tau ^2-\tau +4) u_{e2}^2 \big ) r_e^2} \\&\quad {\scriptstyle +\big ( \lambda ^2 (\tau ^2+3) u_{e2} + x (\tau ^2-2\tau +5) u_{e2} - y (\tau +1)^2 u_{e1} \big ) r_e^4 - \lambda x (\tau ^2+3) r_e^6 \big ]} \, e^{34}\\&- {\scriptstyle \frac{1}{\Delta _e} \, (\tau -1)^2 \big (2\lambda u_{e2}^2 - \big (\lambda s_e^2 +\lambda ^2 u_{e2} - 2 y u_{e1} \big ) r_e^2 +\lambda x r_e^4 \big ) r_e^2}\, e^{56} \,,\end{aligned}$$
$$\begin{aligned} \tfrac{2r_e^4 \Delta _e^2}{k_e^2} ({\rm{Rm}}^{\tau })^1_5 =&-{\scriptstyle \frac{\lambda }{2} (\tau -1) \big ( (\tau +1) u_{e2} -\rho (\tau -1) r_e^2 \big ) r_e^2} \, e^{15} +{\scriptstyle (\tau -1) \big ( \rho (\tau -1) - \frac{\lambda }{2} (\tau +1) \big ) u_{e1} r_e^2 }\, e^{16} \\&{\scriptstyle -\frac{\lambda }{2} (\tau -1) (\tau +1) u_{e1} r_e^2 }\, e^{25} \\&-{\scriptstyle \frac{1}{2} (\tau -1) \big ( 2 (\tau +1) s_e^2 + 2\rho (\tau -1) u_{e2} -\lambda (\tau +1) u_{e2} - \rho \lambda (\tau -1) r_e^2 \big ) r_e^2 }\, e^{26} \\&+{\scriptstyle \frac{\lambda }{2\Delta _e} (\tau -1) (\tau + 1) \big ( |u_e|^2 -\lambda u_{e2} r_e^2 + x r_e^4 \big ) r_e^2} \, e^{35} \\&+{\scriptstyle \frac{1}{2\Delta _e} (\tau -1) (\tau + 1) \big ( 2u_{e1} s_e^2 -(\lambda ^2 u_{e1} -2xu_{e1}+2 y u_{e2}) r_e^2 + \lambda y r_e^4 \big ) r_e^2} \, e^{36} \\&-{\scriptstyle \frac{\lambda }{2\Delta _e} (\tau -1) (\tau + 1) \big ( \lambda u_{e1} - y r_e^2 \big ) r_e^4 }\, e^{45} \\&+{\scriptstyle \frac{1}{2\Delta _e} (\tau -1) \big [ 2\rho (\tau -1)|u_e|^2 + (\tau +1) (2s_e^2 u_{e2} - \lambda |u_e|^2) } \\&\quad {\scriptstyle - \big ( 2 \rho (\tau -1) s_e^2 + (\tau +1) (2 \lambda s_e^2 - \lambda ^2 u_{e2} - 2 x u_{e2} - 2 y u_{e1}) \big ) r_e^2 - \lambda x (\tau +1) r_e^4 \big ] r_e^2} \, e^{46} \,,\\ \\ \tfrac{2r_e^4 \Delta _e^2}{k_e^2} ({\rm{Rm}}^{\tau })^1_6 =&-{\scriptstyle \frac{\lambda }{2} (\tau -1) (\tau +1) u_{e1} r_e^2 }\, e^{15} -{\scriptstyle \frac{1}{2} (\tau -1) \big ( 2 (\tau +1) s_e^2 - 2\rho (\tau -1) u_{e2} -\lambda (\tau +1) u_{e2} + \rho \lambda (\tau -1) r_e^2 \big ) r_e^2} \, e^{16} \\&+{\scriptstyle \frac{\lambda }{2} (\tau -1) \big ( (\tau +1) u_{e2} +\rho (\tau -1) r_e^2 \big ) r_e^2} \, e^{25} +{\scriptstyle (\tau -1) \big ( \rho (\tau -1) + \frac{\lambda }{2} (\tau +1) \big ) u_{e1} r_e^2} \, e^{26} \\&-{\scriptstyle \frac{\lambda }{2\Delta _e} (\tau -1) (\tau + 1) \big ( \lambda u_{e1} - y r_e^2 \big ) r_e^4 }\, e^{35} \\&-{\scriptstyle \frac{1}{2\Delta _e} (\tau -1) \big [ 2\rho (\tau -1)|u_e|^2 - (\tau +1) (2s_e^2 u_{e2} - \lambda |u_e|^2) } \\&\quad {\scriptstyle - \big ( 2 \rho (\tau -1) s_e^2 - (\tau +1) (2 \lambda s_e^2 - \lambda ^2 u_{e2} - 2 x u_{e2} - 2 y u_{e1}) \big ) r_e^2 + \lambda x (\tau +1) r_e^4 \big ] r_e^2 }\, e^{36} \\&-{\scriptstyle \frac{\lambda }{2\Delta _e} (\tau -1) (\tau + 1) \big ( |u_e|^2 -\lambda u_{e2} r_e^2 + x r_e^4 \big ) r_e^2} \, e^{45} \\&-{\scriptstyle \frac{1}{2\Delta _e} (\tau -1) (\tau + 1) \big ( 2u_{e1} s_e^2 -(\lambda ^2 u_{e1} -2xu_{e1}+2 y u_{e2}) r_e^2 + \lambda y r_e^4 \big ) r_e^2} \, e^{46} \,,\end{aligned}$$
$$\begin{aligned} \tfrac{2r_e^4 \Delta _e^2}{k_e^2} ({\rm{Rm}}^{\tau })^3_4 =&-{\scriptstyle \big ( (\tau ^2 - 2 \tau +5) |u_e|^2 + 4 \lambda (\tau -1) u_{e2} r_e^2 - (\tau -1) (\rho (\tau -1) + 4 x) r_e^4 \big ) }\, e^{12}\\&+{\scriptstyle \frac{1}{\Delta _e} \big [ (\tau ^2 - 2 \tau +5) |u_e|^2 u_{e1} + 4 \lambda (\tau -1) u_{e1} u_{e2} r_e^2 } \\&\quad {\scriptstyle - \big ( 2 \lambda ^2 (\tau -1) u_{e1} + \rho \lambda (\tau -1) (\tau +3) u_{e1} - x (\tau ^2 - 2 \tau +5) u_{e1} + y (\tau +1)^2 u_{e2} \big ) r_e^4 + y (\tau -1) (\rho (\tau +3)+2 \lambda ) r_e^6 \big ]}\, e^{13}\\&+{\scriptstyle \frac{1}{\Delta _e} \big [ (\tau ^2 - 2 \tau +5) |u_e|^2 u_{e2} - \big ( \rho (\tau -1)(\tau +3) |u_e|^2 + \lambda (\tau ^2+3) u_{e1}^2 + \lambda (\tau ^2 - 4 \tau +7) u_{e2}^2 \big ) r_e^2 } \\&\quad {\scriptstyle - \big ( 2 \lambda ^2 (\tau -1) u_{e2} - \rho \lambda (\tau -1) (\tau +3) u_{e2} - x (\tau ^2 - 2 \tau +5) u_{e2} - y (\tau +1)^2 u_{e1} \big ) r_e^4 - x (\tau -1) (\rho (\tau +3) - 2 \lambda ) r_e^6 \big ]}\, e^{14}\\&-{\scriptstyle \frac{1}{\Delta _e} \big [ (\tau ^2 - 2 \tau +5) |u_e|^2 u_{e2} + \big ( \rho (\tau -1)(\tau +3) |u_e|^2 - \lambda (\tau ^2+3) u_{e1}^2 - \lambda (\tau ^2 - 4 \tau +7) u_{e2}^2 \big ) r_e^2 } \\&\quad {\scriptstyle - \big ( 2 \lambda ^2 (\tau -1) u_{e2} + \rho \lambda (\tau -1) (\tau +3) u_{e2} - x (\tau ^2 - 2 \tau +5) u_{e2} - y (\tau +1)^2 u_{e1} \big ) r_e^4 + x (\tau -1) (\rho (\tau +3) + 2 \lambda ) r_e^6 \big ]}\, e^{23}\\&+{\scriptstyle \frac{1}{\Delta _e} \big [ (\tau ^2 - 2 \tau +5) |u_e|^2 u_{e1} + 4 \lambda (\tau -1) u_{e1} u_{e2} r_e^2 } \\&\quad {\scriptstyle - \big ( 2 \lambda ^2 (\tau -1) u_{e1} - \rho \lambda (\tau -1) (\tau +3) u_{e1} - x (\tau ^2 - 2 \tau +5) u_{e1} + y (\tau +1)^2 u_{e2} \big ) r_e^4 - y (\tau -1) (\rho (\tau +3)-2 \lambda ) r_e^6 \big ]}\, e^{24}\\&-{\scriptstyle \frac{\tau ^2 - 2 \tau +5}{\Delta _e^2} \big [ |u_e|^4 - 2\lambda |u_e|^2 u_{e2} r_e^2 + (2x+\lambda ^2) |u_e|^2 r_e^4 - 2 \lambda (x u_{e2} +y u_{e1}) r_e^6 +(x^2 + y^2) r_e^8 \big ]}\, e^{34} \\&{\scriptstyle \ +\ \lambda (\tau -1)^2 (\lambda r_e^2 - 2 u_{e2})\, r_e^2} \, e^{56} \,,\end{aligned}$$
$$\begin{aligned} \tfrac{2r_e^4 \Delta _e^2}{k_e^2} ({\rm{Rm}}^{\tau })^3_5 =&-{\scriptstyle \frac{1}{2\Delta _e} (\tau -1) (\tau + 1) \big ( \lambda |u_{e}|^2 + (\lambda s_e^2 -2 y u_{e1}) r_e^2 \big ) r_e^2} \, e^{15} +{\scriptstyle \frac{1}{\Delta _e} (\tau -1) (\tau + 1) \big ( \lambda u_{e2} - s_e^2 - x r_e^2 \big ) u_{e1} r_e^2} \, e^{16} \\&+{\scriptstyle \frac{1}{\Delta _e} (\tau -1) (\lambda u_{e1} - y r_e^2) \big ( (\tau +1) u_{e2} + \rho (\tau -1) r_e^2 \big ) r_e^2} \, e^{25} \\&+{\scriptstyle \frac{1}{2\Delta _e} (\tau -1) \big [ 2 \rho (\tau -1) |u_{e}|^2 + \lambda (\tau +1)(u_{e1}^2 - u_{e2}^2)+2(\tau +1) s_{e}^2 u_{e2} } \\&\quad {\scriptstyle -\big ( 2 \rho \lambda (\tau -1) u_{e2} + \lambda (\tau +1)s_{e}^2 - 2 x (\tau +1) u_{e2} \big ) r_e^2 + 2 \rho x (\tau -1) r_e^4 \big ] r_e^2} \, e^{26} \\&-{\scriptstyle \frac{1}{2\Delta _e^2} (\tau -1) \big [ \lambda (\tau +1) |u_{e}|^2 u_{e2} +\big ( \rho \lambda (\tau -1) |u_{e}|^2 + \lambda ^2(\tau +1) (u_{e1}^2 - u_{e2}^2) - \lambda (\tau +1) s_{e}^2 u_{e2} \big ) r_e^2 } \\&\quad {\scriptstyle -\big ( \rho \lambda s_{e}^2 (\tau -1) - \lambda (\tau +1) (\lambda s_{e}^2 - 4 y u_{e1}) \big ) r_e^4 +2 y^2 (\tau +1) r_e^6 \big ] r_e^2} \, e^{35}\\&-{\scriptstyle \frac{1}{2\Delta _e^2} (\tau -1) \big [ (2\rho (\tau -1) + \lambda (\tau +1)) |u_{e}|^2 u_{e1} - \big ( 2 \rho (\tau -1) s_{e}^2 u_{e1} - (\tau +1) (\lambda s_{e}^2 u_{e1} - 2 \lambda ^2 u_{e1} u_{e2} - 2 y |u_{e}|^2) \big ) r_e^2 } \\&\quad {\scriptstyle + 2 \lambda (\tau +1) (x u_{e1} + y u_{e2}) r_e^4 - 2 xy (\tau +1) r_e^6 \big ] r_e^2} \, e^{36} \\&-{\scriptstyle \frac{1}{2\Delta _e^2} (\tau -1) (\tau + 1) \big [ \lambda |u_{e}|^2 u_{e1} + (\lambda s_{e}^2 u_{e1} - 2 \lambda ^2 u_{e1} u_{e2} - 2 y |u_{e}|^2) r_e^2 +2 \lambda (x u_{e1} + y u_{e2}) r_e^4 - 2 x y r_e^6 \big ] r_e^2} \, e^{45} \\&-{\scriptstyle \frac{1}{2\Delta _e^2} (\tau -1) \big [ \big ( 2 \rho (\tau -1) u_{e2} -(\tau +1)( \lambda u_{e2} - 2 s_{e}^2) \big )|u_{e}|^2 + \big ( \rho \lambda (\tau -1) s_{e}^2 + \lambda (\tau +1) (\lambda s_{e}^2 - 4 x u_{e2}) \big ) r_e^4 + 2 x^2 (\tau +1) r_e^6 } \\&\quad {\scriptstyle -\big ( \rho (\tau -1) (\lambda |u_{e}|^2 + 2 s_{e}^2 u_{e2}) + (\tau +1) (3 \lambda s_e^2 u_{e2} + \lambda ^2 (u_{e1}^2 - u_{e2}^2) - 4 x |u_{e}|^2) \big ) r_e^2}\big ] r_e^2\, e^{46} \,,\end{aligned}$$
$$\begin{aligned} \tfrac{2r_e^4 \Delta _e^2}{k_e^2} ({\rm{Rm}}^{\tau })^3_6 =&\,{\scriptstyle \frac{1}{\Delta _e} (\tau -1) (\lambda u_{e1} - y r_e^2) \big ( (\tau +1) u_{e2} - \rho (\tau -1) r_e^2 \big ) r_e^2} \, e^{15} \\&-{\scriptstyle \frac{1}{2\Delta _e} (\tau -1) \big [ 2\rho (\tau -1) |u_{e}|^2 - (\tau +1) (\lambda (u_{e1}^2 - u_{e2}^2) + 2 s_{e}^2 u_{e2}) } \\&\quad {\scriptstyle - \big ( 2\rho \lambda (\tau -1) u_{e2} -\lambda (\tau +1) s_{e}^2 + 2 x (\tau +1) u_{e2} \big ) r_e^2 + 2 \rho x (\tau -1) r_e^4 \big ] r_e^2} \, e^{16} \\&+{\scriptstyle \frac{1}{2\Delta _e} (\tau -1) (\tau +1) \big [ \lambda (u_{e1}^2 - u_{e2}^2) + (\lambda s_{e}^2 - 2 y u_{e1}) r_e^2 \big ] r_e^2} \, e^{25} -{\scriptstyle \frac{1}{\Delta _e} (\tau -1) (\tau +1) \big [ \lambda u_{e2} - s_e^2 - x r_e^2 \big ] u_{e1}\, r_e^2} \, e^{26}\\&-{\scriptstyle \frac{1}{2\Delta _e^2} (\tau -1) \big [ \big (2 (\tau +1) s_e^2 - (2 \rho (\tau -1) + \lambda (\tau +1)) u_{e2}\big ) |u_{e}|^2 - \big ( \rho \lambda (\tau -1) s_e^2 - \lambda (\tau +1)(\lambda s_e^2 - 4 x u_{e2}) \big ) r_e^4 + 2 x^2 (\tau +1) r_e^6 } \\&\quad {\scriptstyle + \big (\rho (\tau -1) (2 s_e^2 u_{e2} +\lambda |u_{e}|^2) - (\tau +1) (3 \lambda s_e^2 u_{e2} + \lambda ^2 (u_{e1}^2 - u_{e2}^2) - 4 x |u_{e}|^2)\big ) r_e^2\big ] r_e^2} \, e^{36}\\&+{\scriptstyle \frac{1}{2\Delta _e^2} (\tau -1) \big [ \lambda (\tau +1) u_{e2} |u_{e}|^2 -\big (\rho \lambda (\tau -1) |u_{e}|^2 - \lambda (\tau +1) (\lambda (u_{e1}^2 - u_{e2}^2) - s_e^2 u_{e2}) \big ) r_e^2} \\&\quad {\scriptstyle +\big (\rho \lambda (\tau -1) s_e^2 + \lambda (\tau +1) (\lambda s_e^2 - 4 y u_{e1}) \big ) r_e^4 + 2 y^2 (\tau +1) r_e^6 \big ] r_e^2} \, e^{45}\\&-{\scriptstyle \frac{1}{2\Delta _e^2} (\tau -1) \big [ (2 \rho (\tau -1) - \lambda (\tau +1)) u_{e1} |u_{e}|^2-2 \lambda (\tau +1) (x u_{e1} + y u_{e2}) r_e^4 + 2xy(\tau +1) r_e^6 }\\&\quad {\scriptstyle -\big (2 \rho (\tau -1) s_e^2 u_{e1} + \lambda (\tau +1) s_e^2 u_{e1} -2(\tau +1) (\lambda ^2 u_{e1} u_{e2} +y|u_{e}|^2) \big ) r_e^2\big ] r_e^2 } \, e^{46} \,,\end{aligned}$$
$$\begin{aligned} \tfrac{2r_e^4 \Delta _e^2}{k_e^2} ({\rm{Rm}}^{\tau })^5_6 =&-{\scriptstyle \tfrac{2r_e^4 \Delta _e^2}{k_e^2}} \big [\, (Rm^{\tau })^1_2 + (Rm^{\tau })^3_4 \,\big ] - {\scriptstyle 4 (\tau -1) (\lambda u_{e2} - s_e^2 - x r_e^2) r_e^2} \, e^{12} \\&+{\scriptstyle \tfrac{2}{\Delta _e} (\tau -1) \big ( 2 u_{e1} (\lambda u_{e2} - s_e^2) - (\rho \lambda + \lambda ^2 + 2 x) u_{e1} r_e^2 + (\rho + \lambda ) y r_e^4 \big ) r_e^2} \, e^{13}\\&+{\scriptstyle \tfrac{2}{\Delta _e} (\tau -1) \big ( 2 u_{e2} + (\rho - \lambda ) r_e^2 \big ) \big ( \lambda u_{e2} - s_e^2 - x r_e^2 \big ) r_e^2} \, e^{14} \\&-{\scriptstyle \tfrac{2}{\Delta _e} (\tau -1) \big ( 2 u_{e2} - (\rho + \lambda ) r_e^2 \big ) \big ( \lambda u_{e2} - s_e^2 - x r_e^2 \big ) r_e^2} \, e^{23} \\&+{\scriptstyle \tfrac{2}{\Delta _e} (\tau -1) \big ( 2 u_{e1} (\lambda u_{e2} - s_e^2) + (\rho \lambda - \lambda ^2 - 2 x) u_{e1} r_e^2 - (\rho - \lambda ) y r_e^4 \big ) r_e^2} \, e^{24} \\&-{\scriptstyle \tfrac{4}{\Delta _e^2} (\tau -1) \big [ (\lambda u_{e2}-s_e^2) |u_e|^2 + \big ( \lambda u_{e2} s_e^2 - \lambda ^2 |u_e|^2 - x |u_e|^2 \big ) r_e^2 + \big ( 2 \lambda (x u_{e2} + y u_{e1}) - x s_e^2 \big ) r_e^4 - (x^2+y^2) r_e^6 \big ] r_e^2} \, e^{34} \,. \end{aligned}$$

Appendix B

This Appendix is devoted to the computation of \({\rm{Tr}}(A^\kappa \wedge A^\kappa )\) for a Gauduchon connection \(\nabla ^\kappa\) on the holomorphic tangent bundle \(T^{1,0}G\). In particular, the proof of Lemma 5.2 will follow.

Let (GJ) be a Lie group equipped with a left-invariant complex structure. Let \(\{\zeta ^1,\zeta ^2,\zeta ^3\}\) be a left-invariant (1,0)-coframe satisfying (41). Let also \(\omega\) and H be two left-invariant J-Hermitian metrics on G given by

$$\begin{aligned} \omega = \frac{i}{2} ( r^2\, \zeta ^{1\bar{1}} + s^2\, \zeta ^{2\bar{2}} + k^2\, \zeta ^{3\bar{3}}) \qquad \text {and} \qquad H = \frac{i}{2} ( {{\tilde{r}}}^2\, \zeta ^{1\bar{1}} + {{\tilde{s}}}^2\, \zeta ^{2\bar{2}} + {{\tilde{k}}}^2\, \zeta ^{3\bar{3}})\,, \end{aligned}$$
(57)

for some \(r,s,k,{{\tilde{r}}}, {{\tilde{s}}}, {{\tilde{k}}}\in {\mathbb {R}}^*\). If \(\nabla ^\kappa\) is a Gauduchon connection of H and \(A^\kappa\) its curvature form, to compute the trace \(\rm{Tr}(A^\kappa \wedge A^\kappa )\) by using (22) and (23) we need to write the connection 1-forms \({\sigma ^\kappa }\) in terms of an adapted basis \(\{e^l\}_{l=1}^6\) for \(\omega\) (see Proposition 2.1). In the following, we will denote by \((\sigma ^\kappa )^{i}_{ j}\) and \((A^\kappa )^i_j\) the connection 1-forms and the curvature 2-forms, respectively, written in terms of \(\{e^l\}_{l=1}^6\).

Let \(\{{{\tilde{e}}}^{l}\}_{{l}=1}^6\) be an adapted basis for the metric H and \(\{{\tilde{e}}_l\}_{l=1}^6\) its dual. In view of Sect. 2.2, the connection 1-forms \((\sigma ^\kappa )^{{\tilde{i}}}_{{\tilde{j}}}\) associated to \(\nabla ^\kappa\) are given by

$$\begin{aligned} \nabla _{{\tilde{e}}_k} {\tilde{e}}_j = (\sigma ^\kappa )^{{\tilde{1}}}_{{\tilde{j}}}({\tilde{e}}_k)\, {\tilde{e}}_1 +\cdots + (\sigma ^\kappa )^{{\tilde{6}}}_{{\tilde{j}}}({\tilde{e}}_k)\, {\tilde{e}}_6\,. \end{aligned}$$

On the other hand, if \(\{e_l\}_{l=1}^6\) denotes the dual basis of \(\{e^l\}_{l=1}^6\), and \(M:=(M^{ p}_j)\) is the change-of-basis matrix from \(\{e_l\}\) to \(\{{\tilde{e}}_l\}\), i.e.

$$\begin{aligned} {\tilde{e}}_j= M^{ p}_j \, { e}_{ p}\,, \quad \text {for every}\,\, 1\le j\le 6\,, \end{aligned}$$

then one gets

$$\begin{aligned} \nabla _{{\tilde{e}}_k}{\tilde{e}}_j = \nabla _{M^p_k \, {e}_{p}} ( M^{q}_j \, { e}_{ q})= M^{ p}_k \, M^{ q}_j \, \nabla _{{ e}_{ p}} { e}_{ q}= M^{ p}_k \, M^{ q}_j \, (\sigma ^\kappa )^{ l}_{ q}({ e}_{ p})\, { e}_{ l}= M^{ p}_k \, M^{ q}_j\, N^i_{ l} \, (\sigma ^\kappa )^{ l}_{ q}({ e}_{ p}) {\tilde{e}}_i\,, \end{aligned}$$

with \(N:=M^{-1}\) (that is, \({ e}_{ l}= N^i_{ l}\,{\tilde{e}}_i\)), and hence

$$\begin{aligned} (\sigma ^\kappa )^{{\tilde{i}}}_{{\tilde{j}}}({\tilde{e}}_k) = {{\tilde{g}}}(\nabla _{{\tilde{e}}_k} {\tilde{e}}_j,{\tilde{e}}_i) = M^{ p}_k \, M^{ q}_j\, N^i_{ l} \, (\sigma ^\kappa )^{ l}_{ q}({ e}_{ p})\,. \end{aligned}$$
(58)

Since the (1, 0)-coframe \(\{\zeta ^1,\zeta ^2,\zeta ^3\}\) only depends on the complex structure J, by means of (15), (19) and (21) we have

$$\begin{aligned} \begin{aligned} e^1+i\,e^2 = r\, \zeta ^1\,, \quad \quad {{\tilde{r}}}\, \zeta ^1= {{\tilde{e}}}^{ 1}+i\,{{\tilde{e}}}^{ 2}\,,\\ e^3+i\,e^4 = s\,\zeta ^2\,, \quad \quad {{\tilde{s}}}\,\zeta ^2 = {{\tilde{e}}}^{ 3}+i\,{{\tilde{e}}}^{ 4}\,,\\ e^5+i\,e^6 = k\, \zeta ^3\,, \quad \quad {{\tilde{k}}}\, \zeta ^3= {{\tilde{e}}}^{ 5}+i\,{{\tilde{e}}}^{ 6}\,, \end{aligned} \end{aligned}$$

which directly implies

$$\begin{aligned} {\tilde{e}}^1 = \frac{{\tilde{r}}}{ r}\, { e}^{ 1}\,,\quad \quad {\tilde{e}}^2 = \frac{{\tilde{r}}}{r}\, { e}^{ 2}\,, \quad \quad {\tilde{e}}^3 = \frac{ {\tilde{s}} }{ s } \, { e}^{ 3}\,, \quad \quad {\tilde{e}}^4 = \frac{ {\tilde{s}} }{ s } \, { e}^{ 4}\,,\quad \quad {\tilde{e}}^5=\frac{{\tilde{k}}}{ k}\, { e}^{5}\,,\quad \quad {\tilde{e}}^6=\frac{{\tilde{k}}}{ k}\, { e}^{6}\,. \end{aligned}$$

Thereby, the change-of-basis matrix M from \(\{e_l\}\) to \(\{{\tilde{e}}_l\}\) is given by the diagonal matrix

$$\begin{aligned} M:= {\rm{diag}}\left( \frac{r}{{\tilde{r}}}\,,\frac{r}{{\tilde{r}}}\,,\frac{s}{{\tilde{s}}}\,, \frac{s}{{\tilde{s}}}\,,\frac{k}{{\tilde{k}}}\,,\frac{k}{{\tilde{k}}}\right) \,. \end{aligned}$$

Thus, by means of (58), one gets

$$\begin{aligned} (\sigma ^{\kappa })^i_j(e_k) = M^{i}_i\, N^j_{j}\, N^k_{k} \, (\sigma ^{\kappa })^{{\tilde{i}}}_{{\tilde{j}}}({{\tilde{e}}}_{k})\,, \end{aligned}$$
(59)

or, equivalently,

$$\begin{aligned} (\sigma ^{\kappa })^i_j = M^{i}_i\, N^j_{j}\, N^k_{k} \, (\sigma ^{\kappa })^{{\tilde{i}}}_{{\tilde{j}}}({{\tilde{e}}}_{k})\, e^k\,. \end{aligned}$$

Finally, since the connection 1-forms \((\sigma ^\kappa )^{{\tilde{i}}}_{{\tilde{j}}}\) are given in the proof of Proposition 2.3, a direct computation by means of (59) yields that

$$\begin{aligned} \begin{aligned} (\sigma ^{\kappa })^1_2=&-\tfrac{{\tilde{k}}^2}{k\,{{\tilde{r}}}^2}{\scriptstyle (\kappa -1)}\, e^{6}\,,\\ (\sigma ^{\kappa })^1_5=&-\tfrac{{{\tilde{k}}}^2}{2\,k\,{{\tilde{r}}}^2}{\scriptstyle (\kappa +1)}\, e^{1} + \tfrac{r\,{{\tilde{k}}}^2}{2\, s\,k\,{{\tilde{r}}}^2}\, {\scriptstyle \rho (\kappa - 1)}\, e^{3}\,,\\ (\sigma ^{\kappa })^1_6=&\ \tfrac{{{\tilde{k}}}^2}{2\,k\,{{\tilde{r}}}^2}{\scriptstyle (\kappa +1)}\, e^{2} + \tfrac{r\,{{\tilde{k}}}^2}{2 \, s\,k\,{{\tilde{r}}}^2}\, {\scriptstyle \rho (\kappa -1) }\, e^{4}\,,\\ (\sigma ^{\kappa })^3_4=&\ \tfrac{{{\tilde{k}}}^2}{k\,{{\tilde{s}}}^2}\, {\scriptstyle y(\kappa -1)}\, e^{5} -\tfrac{{{\tilde{k}}}^2}{k\,{{\tilde{s}}}^2}\, {\scriptstyle x(\kappa -1)}\, e^{6}\,,\\ (\sigma ^{\kappa })^3_5=&-\tfrac{s\,{{\tilde{k}}}^2}{2\,r\,k\,{{\tilde{s}}}^2} \, {\scriptstyle \rho (\kappa -1)}\, e^{1} -\tfrac{{{\tilde{k}}}^2}{2\, k\,{{\tilde{s}}}^2}\, {\scriptstyle x(\kappa +1)}\, e^{3} -\tfrac{{{\tilde{k}}}^2}{2\,k\,{{\tilde{s}}}^2}\,{\scriptstyle y(\kappa +1)}\, e^{4}\,,\\ (\sigma ^{\kappa })^3_6=&-\tfrac{s\,{{\tilde{k}}}^2}{2\,r\,k\,{{\tilde{s}}}^2}\, {\scriptstyle \rho (\kappa -1)}\, e^{2} -\tfrac{{{\tilde{k}}}^2}{2\,k\,{{\tilde{s}}}^2}\, {\scriptstyle y(\kappa +1)}\, e^{3}+\tfrac{{{\tilde{k}}}^2}{2\,k\,{{\tilde{s}}}^2}\,{\scriptstyle x(\kappa +1)}\, e^{4}\,,\\ (\sigma ^{\kappa })^1_3=&(\sigma ^{\kappa })^1_4=(\sigma ^{\kappa })^2_3 =(\sigma ^{\kappa })^2_4=(\sigma ^{\kappa })^5_6=0\,, \end{aligned} \end{aligned}$$
(60)

together with the following relations

$$\begin{aligned} (\sigma ^{\kappa })^2_5 = - (\sigma ^{\kappa })^1_6\,,\quad (\sigma ^{\kappa })^2_6 = (\sigma ^{\kappa })^1_5\,,\quad (\sigma ^{\kappa })^4_5 = - (\sigma ^{\kappa })^3_6\,, \quad (\sigma ^{\kappa })^4_6 = (\sigma ^{\kappa })^3_5\,, \end{aligned}$$

and \((\sigma ^{\kappa })^i_j = - (\sigma ^{\kappa })^j_i\).

Lemma 7.1

Let G be a 2-step nilpotent Lie group equipped with a left-invariant complex structure J which admits a left-invariant (1, 0)-coframe \(\{ \zeta ^l\}_{l=1}^3\) satisfying (41). Let \(\omega\) and H be two left-invariant J-Hermitian metrics defined by (57). Then, for any Gauduchon connection \(\nabla ^{\kappa }\) associated to H, the trace of its curvature satisfies

$$\begin{aligned} {\rm{Tr}}(A^\kappa \wedge A^\kappa )=C\zeta ^{12{\bar{1}}{\bar{2}}}\,, \end{aligned}$$

where \(C=C(\rho ,x,y;\omega ,H;\kappa )\) is a constant depending both on the Hermitian structures and the connection. More precisely, we have

$$\begin{aligned} \begin{aligned} {\rm{Tr}} (A^\kappa \wedge A^\kappa )=&\frac{(\kappa -1) \,{\tilde{k}}^4}{2k^2{\tilde{r}}^6{\tilde{s}}^6}\Big \lbrace \rho (\kappa -1) \Big [ (2\kappa \, r^2{\tilde{k}}^2 + k^2{\tilde{r}}^2){\tilde{s}}^6 + (x^2+y^2)(2\kappa \, s^2{\tilde{k}}^2 + k^2{\tilde{s}}^2){\tilde{r}}^6 \Big ] \\&+ 4x(\kappa -1) \Big ( (x^2+y^2){\tilde{r}}^4+{\tilde{s}}^4 \Big ) k^2{\tilde{r}}^2{\tilde{s}}^2\\&-x(\kappa +1)^2 \Big ( (x^2+y^2)s^2{\tilde{r}}^6 + r^2{\tilde{s}}^6 \Big ) {\tilde{k}}^2 \Big \rbrace \, \zeta ^{12{\bar{1}}{\bar{2}}}. \end{aligned} \end{aligned}$$

Proof

Let \((\sigma ^{\kappa })^{ i}_{ j}\) be the connection 1-forms of the Gauduchon connection \(\nabla ^{\kappa }\) given in (60). By means of (12) and (22), a direct computations yields that the curvature 2-forms \((A^\kappa )^{ i}_{ j}\) of \(\nabla ^\kappa\) are

$$\begin{aligned} \begin{aligned} (A^\kappa )^{1}_{2}=&\ \tfrac{4 (\kappa -1) k^2{\tilde{r}}^2{\tilde{k}}^2 -(\kappa +1)^2r^2{\tilde{k}}^4}{2r^2k^2{\tilde{r}}^4}\, e^{12} -\tfrac{\rho (\kappa -1) \left( (\kappa +1)r^2{\tilde{k}}^2 + 2k^2{\tilde{r}}^2 \right) {\tilde{k}}^2}{2rsk^2{\tilde{r}}^4}(e^{14}+e^{23})\\&+\tfrac{(\kappa -1) \left( \rho (\kappa -1)r^2{\tilde{k}}^2+4xk^2{\tilde{r}}^2 \right) {\tilde{k}}^2}{2s^2k^2{\tilde{r}}^4}\, e^{34}\,,\\ (A^\kappa )^{1}_{3}=&-\tfrac{ \left( \rho (\kappa -1)^2+x(\kappa +1)^2 \right) {\tilde{k}}^4}{4k^2{\tilde{r}}^2{\tilde{s}}^2}(e^{13}+e^{24}) - \tfrac{y(\kappa +1)^2 {\tilde{k}}^4}{4k^2{\tilde{r}}^2{\tilde{s}}^2}(e^{14}-e^{23})\,,\\ (A^\kappa )^{1}_{4}=&\ \tfrac{y(\kappa +1)^2 {\tilde{k}}^4}{4k^2{\tilde{r}}^2{\tilde{s}}^2}(e^{13}+e^{24})-\tfrac{ \left( \rho (\kappa -1)^2+x(\kappa +1)^2 \right) {\tilde{k}}^4}{4k^2{\tilde{r}}^2{\tilde{s}}^2}(e^{14}-e^{23})\,,\\ (A^\kappa )^{1}_{5}=&-\tfrac{(\kappa -1)(\kappa +1){\tilde{k}}^4}{2k^2{\tilde{r}}^4}\, e^{26} - \tfrac{\rho (\kappa -1)^2 r {\tilde{k}}^4}{2s k^2 {\tilde{r}}^4}\, e^{46}\,,\\ (A^\kappa )^{1}_{6}=&-\tfrac{(\kappa -1)(\kappa +1){\tilde{k}}^4}{2k^2{\tilde{r}}^4}\, e^{16} + \tfrac{\rho (\kappa -1)^2 r {\tilde{k}}^4}{2s k^2 {\tilde{r}}^4}\, e^{36}\,,\\ (A^\kappa )^{3}_{4}=&\ \tfrac{(\kappa -1) \left( \rho (\kappa -1)s^2{\tilde{k}}^2+4xk^2{\tilde{s}}^2 \right) {\tilde{k}}^2}{2r^2k^2{\tilde{s}}^4}\, e^{12} +\tfrac{\rho \,y(\kappa -1) \left( (\kappa +1)s^2{\tilde{k}}^2 + 2k^2{\tilde{s}}^2 \right) {\tilde{k}}^2}{2rsk^2{\tilde{s}}^4}(e^{13}-e^{24})\\&-\tfrac{\rho \,x(\kappa -1) \left( (\kappa +1)s^2{\tilde{k}}^2 + 2k^2{\tilde{s}}^2 \right) {\tilde{k}}^2}{2rsk^2{\tilde{s}}^4}(e^{14}+e^{23}) + \tfrac{(x^2+y^2)\left( 4(\kappa -1)k^2{\tilde{s}}^2 -(\kappa +1)^2 s^2{\tilde{k}}^2 \right) {\tilde{k}}^2}{2s^2k^2{\tilde{s}}^4}\, e^{34}\,,\\ (A^\kappa )^{3}_{5}=&-\tfrac{\rho (\kappa -1)^2 s {\tilde{k}}^4}{2r k^2{\tilde{s}}^4}(y\,e^{25}-x\,e^{26}) -\tfrac{(\kappa -1)(\kappa +1){\tilde{k}}^4}{2k^2{\tilde{s}}^4} \left( y^2\,e^{35}-xy (e^{36}+e^{45})+x^2\,e^{46} \right) \,,\\ (A^\kappa )^{3}_{6}=&\ \tfrac{\rho (\kappa -1)^2 s {\tilde{k}}^4}{2r k^2{\tilde{s}}^4}(y\,e^{15}-x\,e^{16}) +\tfrac{(\kappa -1)(\kappa +1){\tilde{k}}^4}{2k^2{\tilde{s}}^4} \left( xy (e^{25}-e^{36})-x^2\,e^{26}+ y^2\,e^{35} \right) \,,\\ (A^\kappa )^{5}_{6}=&-\tfrac{\left( \rho (\kappa -1)^2s^2{\tilde{r}}^4-(\kappa +1)^2 r^2 {\tilde{s}}^4\right) {\tilde{k}}^4}{2r^2k^2{\tilde{r}}^4{\tilde{s}}^4}\, e^{12} - \tfrac{\rho y(\kappa -1)(\kappa +1)s{\tilde{k}}^4}{2rk^2{\tilde{s}}^4} (e^{13}-e^{24})\\&+ \tfrac{\rho (\kappa -1)(\kappa +1)(r^2{\tilde{s}}^4 + x\,s^2{\tilde{r}}^4){\tilde{k}}^4}{2rsk^2{\tilde{r}}^4{\tilde{s}}^4} (e^{14}+e^{23}) -\tfrac{\left( \rho (\kappa -1)^2r^2{\tilde{s}}^4 - (x^2+y^2)(\kappa +1)^2 s^2{\tilde{r}}^4 \right) {\tilde{k}}^4}{2s^2k^2{\tilde{r}}^4{\tilde{s}}^4}\, e^{34}\,, \end{aligned} \end{aligned}$$

together with the following relations

$$\begin{aligned} \begin{aligned}&(A^\kappa )^{2}_{3}=-(A^\kappa )^{1}_{4}\,,\quad (A^\kappa )^{2}_{4}=(A^\kappa )^{1}_{3}\,,\quad (A^\kappa )^{2}_{5}=-(A^\kappa )^{1}_{6}\,,\quad (A^\kappa )^{2}_{6}=(A^\kappa )^{1}_{5}\,,\\&(A^\kappa )^{4}_{5}=-(A^\kappa )^{3}_{6}\,,\quad (A^\kappa )^{4}_{6}=(A^\kappa )^{3}_{5}\,. \end{aligned} \end{aligned}$$

Therefore, the claim follows by using (23) and (14). \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pujia, M., Ugarte, L. The anomaly flow on nilmanifolds. Ann Glob Anal Geom 60, 501–537 (2021). https://doi.org/10.1007/s10455-021-09781-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-021-09781-6

Keywords

Mathematics Subject Classification

Navigation