Skip to main content
Log in

On the Yamabe problem on contact Riemannian manifolds

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

A contact Riemannian manifold, whose complex structure is not necessarily integrable, is the generalization of the notion of a pseudohermitian manifold in CR geometry. The Tanaka–Webster–Tanno connection plays the role of the Tanaka–Webster connection for a pseudohermitian manifold. Conformal transformations and the Yamabe problem are also defined naturally in this setting. By using special frames and normal coordinates on a contact Riemannian manifold, we prove that if the complex structure is not integrable, the Yamabe invariant on a contact Riemannian manifold is always less than the Yamabe invariant of the Heisenberg group. So the Yamabe problem on a contact Riemannian manifold is always solvable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akutagawa, K., Carron, G., Mazzeo, R.: The Yamabe problem on Dirichlet spaces. arXiv:1306.4373

  2. Aubin, T.: Équations différentielles non linéaires et probléme de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. 55, 269–296 (1976)

    MathSciNet  MATH  Google Scholar 

  3. Barletta, E., Dragomir, S.: Differential equations on contact Riemannian manifolds. Ann. Sc. Norm. Super. Pisa Cl. Sci. Ser. IV XXX(1), 63–96 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Bishop, R.L., Goldberg, S.: Tensor Analysis on Manifolds. Dover Publications Inc., New York (1980)

    MATH  Google Scholar 

  5. Blair, D.E., Dragomir, S.: Pseudohermitian geometry on contact Riemannian manifolds. Rendiconti di Matematica Serie VII 22, 275–341 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Dragomir, S., Perrone, D.: Levi harmonic maps of contact Riemannian manifolds. J. Geom. Anal. 24, 1233–1275 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gamara, N.: The CR Yamabe conjecture the case \(n=1\). J. Eur. Math. Soc. 3, 105–137 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gamara, N., Yacoub, R.: CR Yamabe conjecture-the conformally flat case. Pac. J. Math. 201, 121–175 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ivanov, S.P., Petkov, A.: The qc Yamabe problem on non-spherical quaternionic contact manifolds. J. Math. Pures Appl. 118, 44–81 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ivanov, S.P., Vassilev, D.N.: Extremals for the Sobolev Inequality and the Quaternionic Contact Yamabe Problem. Imperial College Press Lecture Notes. World Scientific Publishing Co., NJ (2011)

    Book  MATH  Google Scholar 

  11. Ivanov, S.P., Vassilev, D.N.: Quaternionic contact Einstein structures and the quaternionic contact Yamabe problem. Mem. Amer. Math. Soc. 231(1086), vi+82 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Jerison, D., Lee, J.M.: The Yamabe problem on CR manifolds. J. Differ. Geom. 25, 167–197 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jerison, D., Lee, J.M.: Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem. J. Amer. Math. Soc. 1, 1–13 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jerison, D., Lee, J.M.: Intrinsic CR normal coordinates and the CR Yamabe problem. J. Differ. Geom. 29, 303–343 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kunkel, C.: Quaternionic contact normal coordinates, preprint, arXiv:0807.0465

  16. Lee, J.M., Parker, T.: The Yamabe problem. Bull. Amer. Math. Soc. 17, 37–91 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Petit, R.: \(Spin^c\)-structures and Dirac operators on contact manifolds. Differential Geom. Appl. 22(2), 229–252 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Schoen, R.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Differential Geometry 20, 479–495 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  19. Seshadri, N.: Approximately Einstein ACH metrics, volume renormalization, and an invariant for contact manifolds. Bull. Soc. Math. France 137(1), 63–91 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tanaka, N.: A Differential Geometry Study on Strongly Pseudo-Convex Manifolds. Kinokuniya, Tokyo (1975)

    MATH  Google Scholar 

  21. Tanno, S.: Variational problems on contact Riemannian manifolds. Trans. Amer. Math. Soc. 314, 349–379 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Trudinger, N.: Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22, 265–274 (1968)

    MathSciNet  MATH  Google Scholar 

  23. Wang, W.: The Yamabe problem on quaternionic contact manifolds. Ann. Mat. Pura Appl. 186(2), 359–380 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, W.: On a conformally invariant variational problem on differential forms. Nonlinear Anal. 68(4), 828–844 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, W., Wu, F.: On the existence of the Yamabe problem on contact Riemannian manifolds. Balkan J. Geom. Appl. 22(2), 101–128 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Webster, S.M.: Pseudohermitian structures on a real hypersurface. J. Differential Geometry 13, 25–41 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wu, F., Wang, W.: The Bochner-type formula and the first eigenvalue of the sub-Laplacian on a contact Riemannian manifold. Differential Geom. Appl. 37, 66–88 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yamabe, H.: On a deformation of Riemannian structures on compact manifolds. Osaka Math. J. 12, 21–37 (1960)

    MathSciNet  MATH  Google Scholar 

  29. Zhang, Y.: The contact Yamabe flow on \(K\)-contact manifold. Sci. China Ser. A 52(8), 1723–1732 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feifan Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by National Nature Science Foundation in China (Nos. 11171298, 11571306).

Appendices

Appendix A: Transformation formulae under a conformal transformation

In this appendix, we will discuss conformal transformations and prove Lemma 4.1. We write components of the tensors after conformal transformation with respect to \(\{W_a,\widehat{T}\}\) and \(\{\widehat{\theta }^a,\widehat{\theta }\}\) satisfying (4.1)–(4.3), e.g., \(\tau (\widehat{T},W_a)=\widehat{A}_a^bW_b,\)\(\Gamma _{\widehat{0}b}^c=\omega _b^c(\widehat{T}).\) See [5, Lemma 10] for a version for a local \(T^{(1,0)}M\)-frame.

1.1 A.1 The transformation formula for connection coefficients

Lemma A.1

We have

$$\begin{aligned} 2h(\nabla _XY,Z)=&X(h(Y,Z))+Y(h(X,Z))-Z(h(X,Y))\nonumber \\&-2h(X,JZ)\theta (Y)-2h(Y,JZ)\theta (X)+2h(X,JY)\theta (Z)\nonumber \\&-h([X,Z],Y)-h([Y,Z],X)+h([X,Y],Z), \end{aligned}$$
(A.1)

for any \(X,Y,Z\in {TM}\). And also we have

$$\begin{aligned} 2h(\nabla _TY,Z)=T(h(Y,Z))-h([T,Z],Y)+h([T,Y],Z), \end{aligned}$$
(A.2)

for any \(Y,Z{\in }HM\).

Proof

We refer to [5, p. 334] for (A.1). For (A.2), we have

$$\begin{aligned} T(h(Y,Z))&=h(\nabla _TY,Z)+h(Y,\nabla _TZ)=h(\nabla _TY,Z)+h(Y,[T,Z])+h(Y,\tau _{*}Z)\\&=h(\nabla _TY,Z)+h(Y,[T,Z])+h(\tau _{*}Y,Z)\\&=2h(\nabla _TY,Z)+h([T,Z],Y)-h([T,Y],Z), \end{aligned}$$

by \(\nabla {T}=0\), the definition of the Webster torsion \(\tau _{*}\) and its self-adjointness (cf. Lemma 2.1). \(\square \)

Corollary A.1

With respect to a frame \(\{W_a,T\}\) with \(\{W_a\}\) horizontal, we have

$$\begin{aligned} \Gamma _{ab}^c=&\frac{1}{2}h^{cd}\Big (W_a(h_{bd})+W_b(h_{ad})-W_d(h_{ab})\nonumber \\&-h([W_a,W_d],W_b)-h([W_b,W_d],W_a)+h([W_a,W_b],W_d)\Big ), \end{aligned}$$
(A.3)

and

$$\begin{aligned} \Gamma _{0b}^c=\frac{1}{2}h^{cd}\Big (T h_{bd} -h([T,W_d],W_b)+h([T,W_b],W_d)\Big ). \end{aligned}$$
(A.4)

Proof

(A.3) follows from substituting \(X=W_a\), \(Y=W_b\), \(Z=W_d\) into (A.1). (A.4) follows from substituting \(Y=W_b\), \(Z=W_d\) into (A.2). \(\square \)

Lemma A.2

Under the conformal transformation (4.1) with \(u\in {\mathscr {O}_m}\), we have

$$\begin{aligned} {[}\widehat{T},W_{\beta }]=[T,W_{\beta }]-iZ_{\beta }Z_{\bar{\alpha }}uW_{\alpha }+iZ_{\beta }Z_{\alpha }uW_{\bar{\alpha }}+\mathscr {E}_{m-1}(W), \end{aligned}$$
(A.5)

where \( \mathscr {E}_{m-1}(W)\) denotes the linear combination of \(W_j\)’s with coefficients in \(\mathscr {O}_{m-1}\).

Proof

We have

$$\begin{aligned} {[}\widehat{T},W_{\beta }]&=[e^{-2u}(T+J_{\ a}^cu^aW_c),W_{\beta }]\\&=e^{-2u}[T,W_{\beta }]+e^{-2u}[J_{\ a}^cu^aW_c,W_{\beta }]+2e^{-2u}u_{\beta }(T+J_{\ a}^cu^aW_c)\\&=[T,W_{\beta }]-(W_{\beta }u^a)J_{\ a}^cW_c+\mathscr {O}_{m-1}\mathscr {E}(W)\\&=[T,W_{\beta }]-(W_{\beta }u_{\bar{\mu }})h^{\alpha \bar{\mu }}J_{\ \alpha }^{\rho }(q)W_{\rho }-(W_{\beta }u_{\mu })h^{\mu \bar{\alpha }}J_{\ \bar{\alpha }}^{\bar{\rho }}(q)W_{\bar{\rho }}+\mathscr {E}_{m-1}(W)\\&=[T,W_{\beta }]-iZ_{\beta }Z_{\bar{\alpha }}uW_{\alpha }+iZ_{\beta }Z_{\alpha }uW_{\bar{\alpha }}+\mathscr {E}_{m-1}(W), \end{aligned}$$

by \(h_{\alpha \bar{\beta }}=\delta _{\alpha \bar{\beta }}\), \(J_{\ \alpha }^{\rho }(q)=i\delta _{\ \alpha }^{\rho }\) in (2.14) and \(u_a{\in }\mathscr {O}_{m-1}\) for \(u\in \mathscr {O}_m\). (A.5) follows. \(\square \)

Proposition A.1

Under the conformal transformation (4.1), connection coefficients of TWT connections change as

$$\begin{aligned} \begin{aligned} \widehat{\Gamma }_{ab}^c&=\Gamma _{ab}^c+u_a\delta _b^c+u_b\delta _a^c-u^ch_{ab},\\ \widehat{\Gamma }_{\widehat{0}\beta }^{\rho }&=\Gamma _{0\beta }^{\rho }+u_0\delta _{\beta }^{\rho } -\frac{i}{2}(Z_{\bar{\rho }}Z_{\beta }u+Z_{\beta }Z_{\bar{\rho }}u)+\mathscr {O}_{m-1}. \end{aligned} \end{aligned}$$
(A.6)

Proof

By Corollary A.1, we get

$$\begin{aligned} \widehat{\Gamma }_{ab}^c&=\frac{1}{2}e^{-2u}h^{cd} \bigg (W_a\bigg (e^{2u}h_{bd}\bigg )+W_b\bigg (e^{2u}h_{ad}\bigg ) -W_d\bigg (e^{2u}h_{ab}\bigg )\\&\quad -e^{2u}h([W_a,W_d],W_b)-e^{2u}h([W_b,W_d],W_a) +e^{2u}h([W_a,W_b],W_d)\bigg )\\&=\Gamma _{ab}^c+u_a\delta _b^c+u_b\delta _a^c-u^ch_{ab}. \end{aligned}$$

Note that

$$\begin{aligned} \widehat{\Gamma }_{\widehat{0}\beta }^{\rho }=\frac{1}{2}\widehat{h}^{\rho \bar{\mu }}\left( \widehat{T} \widehat{h}_{\beta \bar{\mu }} -\widehat{h}\left( \left[ \widehat{T},W_{\bar{\mu }}\right] ,W_{\beta }\right) +\widehat{h}\left( \left[ \widehat{T},W_{\beta }\right] ,W_{\bar{\mu }}\right) \right) . \end{aligned}$$
(A.7)

For the first term in the right-hand side of (A.7), by (4.2), we have

$$\begin{aligned} \frac{1}{2}\widehat{h}^{\rho \bar{\mu }}\widehat{T} \widehat{h}_{\beta \bar{\mu }}&=\frac{1}{2}e^{-4u}h^{\rho \bar{\mu }}\left( T+J_{\ a}^eu^aW_e\right) \left( e^{2u}h_{\beta \bar{\mu }}\right) =\frac{1}{2}h^{\rho \bar{\mu }}T h_{\beta \bar{\mu }} +u_0\delta _{\beta }^{\rho }+\mathscr {O}_{m-1}. \end{aligned}$$

Take conjugation on both sides of (A.5) to get \([\widehat{T},W_{\bar{\mu }}]=[T,W_{\bar{\mu }}]+iZ_{\bar{\mu }}Z_{\alpha }uW_{\bar{\alpha }}- iZ_{\bar{\mu }}Z_{\bar{\alpha }}uW_{\alpha }+\mathscr {E}_{m-1}(W) \) and so

$$\begin{aligned} -\frac{1}{2}\widehat{h}^{\rho \bar{\mu }}\widehat{h}([\widehat{T},W_{\bar{\mu }}],W_{\beta }) =-\frac{1}{2}h^{\rho \bar{\mu }}h([T,W_{\bar{\mu }}],W_{\beta })-\frac{i}{2}Z_{\bar{\rho }}Z_{\beta }u+\mathscr {O}_{m-1}, \end{aligned}$$

and

$$\begin{aligned} \frac{1}{2}\widehat{h}^{\rho \bar{\mu }}\widehat{h}([\widehat{T},W_{\beta }],W_{\bar{\mu }}) =\frac{1}{2}h^{\rho \bar{\mu }}h([T,W_{\beta }],W_{\bar{\mu }})-\frac{i}{2}Z_{\beta }Z_{\bar{\rho }}u+\mathscr {O}_{m-1}. \end{aligned}$$

So (A.7) becomes \(\widehat{\Gamma }_{\widehat{0}\beta }^{\rho }=\Gamma _{0\beta }^{\rho }+u_0\delta _{\beta }^{\rho } -\frac{i}{2}(Z_{\bar{\rho }}Z_{\beta }u+Z_{\beta }Z_{\bar{\rho }}u)+\mathscr {O}_{m-1}\). \(\square \)

1.2 A.2. Transformation formulae for curvature and Webster torsion tensors

Proof of Lemma 4.1

By \(\nabla {T}=0\) and \(\tau _{*}W_a=\tau (T,W_a)=\nabla _TW_a-[T,W_a]\), we get

$$\begin{aligned} A_{ab}&=h(A_a^cW_c,W_b)=h(\tau _{*}W_a,W_b)=h(\nabla _TW_a-[T,W_a],W_b)\\&=T(h_{ab})-h(W_a,\nabla _TW_b)-h([T,W_a],W_b)\\&=T(h_{ab})-h(W_a,\tau _{*}W_b+[T,W_b])-h([T,W_a],W_b)\\&=T(h_{ab})-A_{ba}-h([W_a,[T,W_b])-h([T,W_a],W_b). \end{aligned}$$

Since the tensor A is self-adjoint by Lemma 2.1, we get

$$\begin{aligned} A_{ab}=\frac{1}{2}\bigg (T(h_{ab})-h([W_a,[T,W_b])-h([T,W_a],W_b)\bigg ). \end{aligned}$$

In particular, \(A_{\alpha \beta }=-\frac{1}{2}\big (h(W_{\alpha },[T,W_{\beta }]))+h([T,W_{\alpha }],W_{\beta })\big )\). Applying Lemma A.2 with respect to the frame \(\{W_a,\widehat{T}\}\), we get

$$\begin{aligned} \widehat{A}_{\alpha \beta }&=-\frac{1}{2}\bigg (\widehat{h}(W_{\alpha },[\widehat{T},W_{\beta }]))+\widehat{h}([\widehat{T},W_{\alpha }],W_{\beta })\bigg ) {=}A_{\alpha \beta }-\frac{i}{2}Z_{\alpha }Z_{\beta }u-\frac{i}{2}Z_{\beta }Z_{\alpha }u{+}\mathscr {O}_{m-1}\\&=A_{\alpha \beta }-iZ_{\alpha }Z_{\beta }u+\mathscr {O}_{m-1}, \end{aligned}$$

by \(\widehat{h}=(1+ \mathscr {O}_m)h\), (A.5) and \([Z_{\alpha },Z_{\beta }]=0\). By (2.11) with respect to frame \(\{W_a,\widehat{T}\}\), we get

$$\begin{aligned} \widehat{R}_{\alpha \ \gamma \bar{\beta }}^{\ \gamma }=W_{\gamma }\widehat{\Gamma }_{\bar{\beta }\alpha }^{\ \gamma }-W_{\bar{\beta }}\widehat{\Gamma }_{\gamma \alpha }^{\gamma } -\widehat{\Gamma }_{\gamma \bar{\beta }}^e\widehat{\Gamma }_{e\alpha }^{\gamma } +\widehat{\Gamma }_{\bar{\beta }\gamma }^e\widehat{\Gamma }_{e\alpha }^{\gamma } -\widehat{\Gamma }_{\gamma \alpha }^e\widehat{\Gamma }_{\bar{\beta }e}^{\gamma } +\widehat{\Gamma }_{\bar{\beta }\alpha }^e\widehat{\Gamma }_{{\gamma }e}^{\gamma } +2\widehat{\Gamma }_{\widehat{0}\alpha }^{\gamma }\widehat{J}_{\gamma \bar{\beta }}. \end{aligned}$$
(A.8)

By the first identity in (A.6) and (2.14), for \(u\in \mathscr {O}_m\), we have

$$\begin{aligned} W_{\gamma }\widehat{\Gamma }_{\bar{\beta }\alpha }^{\ \gamma }&=W_\gamma \bigg (\Gamma _{\bar{\beta }\alpha }^{\ \gamma }+u_{\bar{\beta }}\delta _{\alpha }^{\gamma }-u^{\gamma }h_{\alpha \bar{\beta }}\bigg )=W_\gamma \Gamma _{\bar{\beta }\alpha }^{\ \gamma }+W_{\gamma }(u_{\bar{\beta }})\delta _{\alpha }^{\gamma }-h^{\gamma \bar{\mu }}W_\gamma (u_{\bar{\mu }})h_{\alpha \bar{\beta }}\nonumber \\&=W_\gamma \Gamma _{\bar{\beta }\alpha }^{\ \gamma } +Z_{\alpha }Z_{\bar{\beta }}u-\delta _{\alpha \bar{\beta }}Z_{\gamma }Z_{\bar{\gamma }}u+\mathscr {O}_{m-1}, \end{aligned}$$
(A.9)

and

$$\begin{aligned} W_{\bar{\beta }}\widehat{\Gamma }_{\gamma \alpha }^{\gamma }&= W_{\bar{\beta }}\bigg ({\Gamma }_{\gamma \alpha }^{\gamma } +u_{\gamma }\delta _{\alpha }^{\gamma }+u_{\alpha }\delta _{\gamma }^{\gamma }\bigg ) =W_{\bar{\beta }}{\Gamma }_{\gamma \alpha }^{\gamma }+(n+1) Z_{\bar{\beta }}Z_{\alpha }u+\mathscr {O}_{m-1}. \end{aligned}$$

Again by the first identity of (A.6), we have \(\widehat{\Gamma }_{ab}^c={\Gamma }_{ab}^c+\mathscr {O}_{m-1}\), and by (2.27), we have \({\Gamma }_{ab}^c=\mathscr {O}_{1}\). So we get

$$\begin{aligned} \widehat{\Gamma }_{ab}^c\widehat{\Gamma }_{de}^f={\Gamma }_{ab}^c{\Gamma }_{de}^f+\mathscr {O}_{m}, \end{aligned}$$

for any indices abcdef. By the second identity of (A.6), \(J_{\gamma \bar{\beta }}=-i\delta _{\gamma \bar{\beta }}\) in (2.14) and \(u_0=Tu=\frac{\partial {u}}{\partial {t}}+\mathscr {O}_m\) by (2.26), we get

$$\begin{aligned} 2\widehat{\Gamma }_{\widehat{0}\alpha }^{\gamma }\widehat{J}_{\gamma \bar{\beta }}&=2\bigg (\Gamma _{0\alpha }^{\gamma }+u_0\delta _{\alpha }^{\gamma } -\frac{i}{2}Z_{\bar{\gamma }}Z_{\alpha }u-\frac{i}{2}Z_{\alpha }Z_{\bar{\gamma }}u\bigg )J_{\gamma \bar{\beta }}+\mathscr {O}_{m-1}\nonumber \\&=2\Gamma _{0\alpha }^{\gamma }J_{\gamma \bar{\beta }}-2i\frac{\partial {u}}{\partial {t}}\delta _{\alpha \bar{\beta }} -Z_{\bar{\beta }}Z_{\alpha }u-Z_{\alpha }Z_{\bar{\beta }}u+\mathscr {O}_{m-1}. \end{aligned}$$
(A.10)

Noting that \([Z_{\alpha },Z_{\bar{\beta }}] =2i\delta _{\alpha \bar{\beta }}\frac{\partial }{\partial {t}}\), (A.8) leads to

$$\begin{aligned} \widehat{R}_{\alpha \ \gamma \bar{\beta }}^{\ \gamma }&=R_{\alpha \ \gamma \bar{\beta }}^{\ \gamma }-2i\delta _{\alpha \bar{\beta }}\frac{\partial {u}}{\partial {t}}-(n+2) Z_{\bar{\beta }}Z_{\alpha }u -\delta _{\alpha \bar{\beta }}Z_{\gamma }Z_{\bar{\gamma }}u+\mathscr {O}_{m-1}\\&=R_{\alpha \ \gamma \bar{\beta }}^{\ \gamma }-\frac{n+2}{2}\bigg (Z_{\bar{\beta }} Z_{\alpha }u+Z_{\alpha }Z_{\bar{\beta }}u\bigg ) +\frac{1}{2}{\delta }_{\alpha \bar{\beta }}\mathscr {L}_0u+\mathscr {O}_{m-1}, \end{aligned}$$

with \(\mathscr {L}_0=-(Z_{\alpha }Z_{\bar{\alpha }}+Z_{\bar{\alpha }}Z_{\alpha })\). \(\square \)

Appendix B: Calculation of \(a_2(n)\) and \(b_2(n)\)

Recall that we choose special frames satisfying Proposition 5.1 over a contact Riemannian manifold \((M,\theta ,h,J)\).

1.1 B.1. Calculation of \(v_2^{jk}\)

Lemma B.1

For \(v_2^{jk}\) defined in (5.4), we have

$$\begin{aligned} \begin{aligned} v_2^{\alpha \gamma }&=-\frac{1}{6}R_{d\ c\bar{\alpha }}^{\ \gamma }(q)z^dz^c,\qquad \qquad \qquad \qquad \qquad \qquad v_2^{\bar{\alpha }\bar{\gamma }}=-\frac{1}{6}R_{d\ c\gamma }^{\ \bar{\alpha }}(q)z^dz^c,\\ v_2^{\alpha \bar{\gamma }}&=-\frac{1}{6}\bigg (R_{d\ c\gamma }^{\ \alpha }(q)+R_{d\ c\bar{\alpha }}^{\ \bar{\gamma }}(q)\bigg )z^cz^d+\delta ^{\alpha }_{\gamma }v_2,\qquad \quad v_2^{\bar{\alpha }\gamma }=0,\\ v_2^{\alpha 0}&=-\frac{1}{2}J_{b\bar{\alpha }(2)}z^{b} +\frac{i}{12}R_{d\ c\bar{\alpha }}^{\ \bar{\rho }}(q)z^dz^cz^{\rho }-\frac{i}{12}R_{d\ c\bar{\alpha }}^{\ \rho }(q)z^dz^cz^{\bar{\rho }},\\ v_2^{0\bar{\alpha }}&=-\frac{1}{2}J_{b\alpha (2)}z^{b} +\frac{i}{12}R_{d\ c\alpha }^{\ \bar{\rho }}(q)z^dz^cz^{\rho }-\frac{i}{12}R_{d\ c\alpha }^{\ \rho }(q)z^dz^cz^{\bar{\rho }},\\ v_2^{\bar{\alpha }0}&=0=v_2^{0\alpha }, \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad v_2^{00}=\frac{4}{9}Q_{\gamma \lambda }^{\bar{\beta }}(q)Q_{\bar{\sigma }\bar{\mu }}^{\beta }(q)z^{\gamma }z^{\lambda }z^{\bar{\sigma }}z^{\bar{\mu }}. \end{aligned} \end{aligned}$$
(B.1)

Proof

In the sequel, we will use Proposition 2.8 repeatedly, especially \(s_{\beta (0)}^{\alpha }=s_{\bar{\beta }(0)}^{\bar{\alpha }}=\delta _{\beta }^{\alpha }, s_{\beta (0)}^{\bar{\alpha }}=s_{\bar{\beta }(0)}^{\alpha }=0, s_{b(1)}^j=0, s_{b(0)}^0 =0,\) and we also have \(v_0=1\), \(v_1=0\), by Corollary 5.1. We find that

$$\begin{aligned} v_2^{\alpha \gamma }&=\sum \limits _{m_0+m_1+m_2=2,\beta }s_{\beta (m_1)}^{\alpha }s_{\bar{\beta }(m_2)}^{\gamma }v_{m_0}\\&=s_{\beta (2)}^{\alpha }s_{\bar{\beta }(0)}^{\gamma }v_{0}+s_{\beta (0)}^{\alpha }s_{\bar{\beta }(2)}^{\gamma }v_{0} +s_{\beta (1)}^{\alpha }s_{\bar{\beta }(1)}^{\gamma }v_{0}+s_{\beta (1)}^{\alpha }s_{\bar{\beta }(0)}^{\gamma }v_{1} +s_{\beta (0)}^{\alpha }s_{\bar{\beta }(1)}^{\gamma }v_{1}+s_{\beta (0)}^{\alpha }s_{\bar{\beta }(0)}^{\gamma }v_{2}\\&=\delta _{\beta }^{\alpha }s_{\bar{\beta }(2)}^{\gamma }v_0=s_{\bar{\alpha }(2)}^{\gamma } =-\frac{1}{6}R_{d\ c\bar{\alpha }}^{\ \gamma }(q)z^dz^c, \end{aligned}$$

by (2.24) for \(s_{\bar{\beta }(2)}^{\alpha }\). Similarly we get

$$\begin{aligned} v_2^{\alpha \bar{\gamma }}&=\sum \limits _{m_0+m_1+m_2=2,\beta }s_{\beta (m_1)}^{\alpha }s_{\bar{\beta }(m_2)}^{\bar{\gamma }}v_{m_0} =s_{\beta (2)}^{\alpha }\delta _{\bar{\beta }}^{\bar{\gamma }}+\delta _{\beta }^{\alpha }s_{\bar{\beta }(2)}^{\bar{\gamma }} +\delta _{\beta }^{\alpha }\delta _{\bar{\beta }}^{\bar{\gamma }}v_2 =s_{\gamma (2)}^{\alpha }+s_{\bar{\alpha }(2)}^{\bar{\gamma }}+\delta _{\gamma }^{\alpha }v_2\\&=-\frac{1}{6}\bigg (R_{d\ c\gamma }^{\ \alpha }(q)+R_{d\ c\bar{\alpha }}^{\ \bar{\gamma }}(q)\bigg )z^dz^c+\delta _{\gamma }^{\alpha }v_2,\\ v_2^{\bar{\alpha }\gamma }&=\sum \limits _{m_0+m_1+m_2=2,\beta }s_{\beta (m_1)}^{\bar{\alpha }}s_{\bar{\beta }(m_2)}^{\gamma }v_{m_0}=0,\\ v_2^{\bar{\alpha }\bar{\gamma }}&=\sum \limits _{m_0+m_1+m_2=2,\beta }s_{\beta (m_1)}^{\bar{\alpha }}s_{\bar{\beta }(m_2)}^{\bar{\gamma }}v_{m_0} =s_{\beta (2)}^{\bar{\alpha }}\delta _{\bar{\beta }}^{\bar{\gamma }}=s_{\gamma (2)}^{\bar{\alpha }} =-\frac{1}{6}R_{d\ c\gamma }^{\ \bar{\alpha }}(q)z^dz^c,\\ v_2^{\alpha 0}&=\sum \limits _{m_0+m_1+m_2=2,\beta }s_{\beta (m_1)}^{\alpha }s_{\bar{\beta }(m_2+1)}^0v_{m_0} =\delta _{\beta }^{\alpha }s_{\bar{\beta }(3)}^0=s_{\bar{\alpha }(3)}^0\\&=-\frac{1}{2}J_{b\bar{\alpha }(2)}z^{b} +\frac{i}{12}R_{d\ c\bar{\alpha }}^{\ \bar{\rho }}(q)z^dz^cz^{\rho }-\frac{i}{12}R_{d\ c\bar{\alpha }}^{\ \rho }(q)z^dz^cz^{\bar{\rho }},\\ v_2^{\bar{\alpha }0}&=\sum \limits _{m_0+m_1+m_2=2,\beta }s_{\beta (m_1)}^{\bar{\alpha }}s_{\bar{\beta }(m_2+1)}^0v_{m_0}=0,\\ v_2^{0\alpha }&=\sum \limits _{m_0+m_1+m_2=2,\beta }s_{\beta (m_1+1)}^0s_{\bar{\beta }(m_2)}^{\alpha }v_{m_0}=0,\\ v_2^{0\bar{\alpha }}&=\sum \limits _{m_0+m_1+m_2=2,\beta }s_{\beta (m_1+1)}^0s_{\bar{\beta }(m_2)}^{\bar{\alpha }}v_{m_0} =s_{\beta (3)}^0\delta _{\bar{\beta }}^{\bar{\alpha }}=s_{\alpha (3)}^0\\&=-\frac{1}{2}J_{b\alpha (2)}z^{b} +\frac{i}{12}R_{d\ c\alpha }^{\ \bar{\rho }}(q)z^dz^cz^{\rho }-\frac{i}{12}R_{d\ c\alpha }^{\ \rho }(q)z^dz^cz^{\bar{\rho }}. \end{aligned}$$

By Corollary 3.1 for \(s_{b(2)}^0\) and Proposition 3.3, we get \(v_2^{00}=\sum \limits _{m_0+m_1+m_2=2,\beta }s_{\beta (m_1+1)}^0s_{\bar{\beta }(m_2+1)}^0v_{m_0} =s_{\beta (2)}^0s_{\bar{\beta }(2)}^0 =\frac{4}{9}Q_{\gamma \lambda }^{\bar{\beta }}(q)Q_{\bar{\sigma }\bar{\mu }}^{\beta }(q)z^{\gamma }z^{\lambda }z^{\bar{\sigma }}z^{\bar{\mu }}. \) So we finish the proof of Lemma B.1. \(\square \)

1.2 B.2 Proof of Lemma 5.7

By the first identity in (B.1) for \(v_2^{\alpha \gamma }\) and (5.5), we get

$$\begin{aligned} \int _{\mathscr {H}^n}v_2^{\alpha \gamma }Z_{\alpha }\Phi {Z_{\gamma }\Phi }dV&=\int _{\mathscr {H}^n}\frac{n^2}{6}R_{d\ c\bar{\alpha }}^{\ \gamma }(q)z^dz^{\bar{\gamma }}z^cz^{\bar{\alpha }} \frac{t^2+2i(|z|^2+1)t-(|z|^2+1)^2}{|w+i|^{2n+4}}dV\nonumber \\&=\int _{\mathscr {H}^n}\frac{n^2}{6}R_{\rho \ \lambda \bar{\alpha }}^{\ \gamma }(q) z^{\rho }z^{\bar{\gamma }}z^{\lambda }z^{\bar{\alpha }} \frac{t^2+2i(|z|^2+1)t-(|z|^2+1)^2}{|w+i|^{2n+4}}dV\nonumber \\&=\frac{n^2(4\pi )^n}{12(n+1)}\mathfrak {Q} \int _{-\infty }^{\infty }\int _0^{\infty }\frac{t^2+2i(r^2+1) t-(r^2+1)^2}{|1+i(1+r^2)|^{2n+4}}r^{2n+3}drdt, \end{aligned}$$
(B.2)

where the last identity follows from the third identity in (5.8). Similarly we have

$$\begin{aligned} \int _{\mathscr {H}^n}v_2^{\bar{\alpha }\bar{\gamma }}Z_{\bar{\alpha }}\Phi {Z_{\bar{\gamma }}\Phi }dV =\frac{n^2(4\pi )^n}{12(n+1)}\mathfrak {Q}\int _{-\infty }^{\infty }\int _0^{\infty }\frac{t^2-2i(r^2+1)t -(r^2+1)^2}{|1+i(1+r^2)|^{2n+4}}r^{2n+3}drdt. \end{aligned}$$
(B.3)

Then by (B.1) and (5.5), we get

$$\begin{aligned} \begin{aligned}&\int _{\mathscr {H}^n}v_2^{\alpha \bar{\gamma }}Z_{\alpha }\Phi {Z_{\bar{\gamma }}\Phi }dV\\&\quad =\int _{\mathscr {H}^n}\left[ -\frac{n^2}{6}\left( R_{d\ c\gamma }^{\ \alpha }(q) +R_{d\ c\bar{\alpha }}^{\ \bar{\gamma }}(q)\right) z^dz^c +\delta _{\gamma }^{\alpha }v_2\right] z^{\bar{\alpha }}z^{\gamma }\frac{t^2+(|z|^2+1)^2}{|w+i|^{2n+4}}dV\\&\quad =\int _{\mathscr {H}^n}\bigg [\frac{n^2}{6}\left( R_{\rho \ \gamma \bar{\lambda }}^{\ \alpha }(q)z^{\rho }z^{\bar{\alpha }}z^{\gamma }z^{\bar{\lambda }}-R_{\bar{\rho }\ \lambda \gamma }^{\ \alpha }(q)z^{\bar{\rho }}z^{\bar{\alpha }}z^{\lambda }z^{\gamma } -R_{\rho \ \bar{\lambda }\bar{\alpha }}^{\ \bar{\gamma }}(q)z^{\rho }z^{\gamma }z^{\bar{\lambda }}z^{\bar{\alpha }}\right. \\&\qquad \left. +R_{\bar{\rho }\ \bar{\alpha }\lambda }^{\ \bar{\gamma }}(q)z^{\bar{\rho }}z^{\gamma }z^{\bar{\alpha }}z^{\lambda }\right) \frac{t^2+(|z|^2+1)^2}{|w+i|^{2n+4}}+v_2n^2|z|^2\frac{t^2+(|z|^2+1)^2}{|w+i|^{2n+4}}\bigg ]dV\\&\quad =\frac{n^2}{6(n+1)}(4\pi )^n\mathfrak {Q}\int _{-\infty }^{\infty }\int _0^{\infty } \frac{\big (t^2+(r^2+1)^2\big )r^{2n+3}}{|t^2+i(1+r^2)|^{2n+4}}drdt\\&\qquad +\frac{n^2}{6}(4\pi )^n\mathfrak {Q}N_1(2n+2,2n+3,0). \end{aligned} \end{aligned}$$
(B.4)

The last identity follows from the third and fourth identities in (5.8) and

$$\begin{aligned}&\int _{\mathscr {H}^n}v_2n^2|z|^2\frac{t^2+(|z|^2+1)^2}{|w+i|^{2n+4}}dV\\&\quad =-\frac{1}{6}\int _{\mathscr {H}^n}\left( R_{\bar{\beta }\ \alpha \mu }^{\ \alpha }(q)z^{\bar{\beta }}z^{\mu }+R_{\beta \ \bar{\alpha }\bar{\mu }}^{\ \bar{\alpha }}(q)z^{\beta }z^{\bar{\mu }}\right) n^2|z|^2\frac{t^2+(|z|^2+1)^2}{|w+i|^{2n+4}}dV\\&\quad =\frac{n^2}{6}(4\pi )^n\mathfrak {Q}\int _{-\infty }^{\infty }\int _0^{\infty }\frac{r^{2n+3}}{|t+i(1+r^2)|^{2n+2}}drdt=\frac{n^2}{6}(4\pi )^n\mathfrak {Q}N_1(2n+2,2n+3,0), \end{aligned}$$

by (5.6) for \(v_2\), (5.8) and Lemma 5.4. And by (B.1), we have

$$\begin{aligned} \int _{\mathscr {H}^n}v_2^{\bar{\alpha }\gamma }Z_{\bar{\alpha }}{\Phi }Z_{\gamma }{\Phi }dV=0. \end{aligned}$$
(B.5)

Taking summation of (B.2)–(B.5), we get

$$\begin{aligned}&\int _{\mathscr {H}^n}v_2^{ab}Z_a{\Phi }Z_b{\Phi }dV\\&\quad =\frac{n^2}{3(n+1)}(4\pi )^n\mathfrak {Q}\int _{-\infty }^{\infty }\int _0^{\infty }\frac{t^2r^{2n+3}}{|t^2+i(1+r^2)|^{2n+4}}drdt\\&\quad +\frac{n^2}{6}(4\pi )^n\mathfrak {Q}N_1(2n+2,2n+3,0)\\&\quad =\frac{n^2}{3(n+1)}(4\pi )^nN_1(2n+4,2n+3,2)\mathfrak {Q}+\frac{n^2}{6}(4\pi )^nN_1(2n+2,2n+3,0)\mathfrak {Q}\\&\quad =\frac{n^4+2n^3+2n^2}{6(n-1)(n+1)}(4\pi )^nN_1(2n+2,2n+1,0)\mathfrak {Q}, \end{aligned}$$

by using the last two identities in (5.9). So the first identity in (5.17) follows.

By (B.1), we get

$$\begin{aligned} \int _{\mathscr {H}^n}v_2^{0\alpha }Z_0{\Phi }Z_{\alpha }{\Phi }dV=\int _{\mathscr {H}^n}v_2^{\bar{\alpha }0}Z_{\bar{\alpha }}{\Phi }Z_0{\Phi }dV=0. \end{aligned}$$
(B.6)

By (B.1), (5.5) and substituting identities in (5.8) for certain terms, we get

$$\begin{aligned}&\int _{\mathscr {H}^n} v_2^{\alpha 0}Z_{\alpha }{\Phi }Z_0{\Phi }dV =\int _{\mathscr {H}^n}\bigg (-\frac{1}{2}J_{b\bar{\alpha }(2)}z^{b} +\frac{i}{12}R_{d\ c\bar{\alpha }}^{\ \bar{\rho }}(q)z^cz^dz^{\rho }-\frac{i}{12}R_{d\ c\bar{\alpha }}^{\ \rho }(q)z^cz^dz^{\bar{\rho }}\bigg )\nonumber \\&\qquad \cdot (-in^2z^{\bar{\alpha }})\frac{t^2+it(|z|^2+1)}{|w+i|^{2n+4}}dV\nonumber \\&\quad =n^2\int _{\mathscr {H}^n}\bigg (\frac{i}{2}J_{\beta \bar{\alpha }(2)}z^{\beta }z^{\bar{\alpha }}+\frac{i}{2}J_{\bar{\beta }\bar{\alpha }(2)}z^{\bar{\beta }}z^{\bar{\alpha }} +\frac{1}{12}\big (R_{\beta \ \bar{\mu }\bar{\alpha }}^{\ \bar{\rho }}(q)z^{\beta }z^{\rho }z^{\bar{\mu }}z^{\bar{\alpha }}-R_{\bar{\mu }\ \bar{\alpha }\beta }^{\ \bar{\rho }}(q)z^{\bar{\mu }}z^{\rho }z^{\bar{\alpha }}z^{\beta }\big )\nonumber \\&\qquad -\frac{1}{12}R_{\beta \ \mu \bar{\alpha }}^{\ \rho }(q)z^{\beta }z^{\bar{\rho }}z^{\mu }z^{\bar{\alpha }}\bigg )\frac{t^2+it(|z|^2+1)}{|w+i|^{2n+4}}dV\nonumber \\&\quad =\frac{n^2}{n+1}(4\pi )^n\bigg (-\frac{3}{4}+0+0-\frac{1}{24}-\frac{1}{24}\bigg )\mathfrak {Q}\int _{-\infty }^{\infty }\int _0^{\infty }\frac{t^2+it(r^2+1)}{|t^2+i(1+r^2)|^{2n+4}}r^{2n+3}drdt\nonumber \\&\quad =-\frac{5n^2}{6(n+1)}(4\pi )^n\mathfrak {Q}\int _{-\infty }^{\infty }\int _0^{\infty }\frac{t^2+it(r^2+1)}{|t^2+i(1+r^2)|^{2n+4}}r^{2n+3}drdt. \end{aligned}$$
(B.7)

By taking conjugation of (B.7), we get

$$\begin{aligned} \int _{\mathscr {H}^n}v_2^{0\bar{\alpha }}Z_0{\Phi }Z_{\bar{\alpha }}{\Phi }dV =-\frac{5n^2}{6(n+1)}(4\pi )^n\mathfrak {Q}\int _{-\infty }^{\infty }\int _0^{\infty }\frac{t^2-it(r^2+1)}{|t^2+i(1+r^2)|^{2n+4}}r^{2n+3}drdt. \end{aligned}$$
(B.8)

Now taking summation of (B.6)–(B.8), we get

$$\begin{aligned}&\int _{\mathscr {H}^n}\left( v_2^{a0}Z_a{\Phi }Z_0{\Phi }+v_2^{0a}Z_0{\Phi }Z_a{\Phi }\right) dV\\&\quad =-\frac{5n^2}{3(n+1)}(4\pi )^n\mathfrak {Q}\int _{-\infty }^{\infty }\int _0^{\infty }\frac{r^{2n+3}t^2}{|t^2+i(1+r^2)|^{2n+4}}drdt\\&\quad =-\frac{5n^2}{3(n+1)}(4\pi )^n\mathfrak {Q}N_1(2n+4,2n+3,2)=-\frac{5n^2}{6(n+1)(n-1)}\mathfrak {Q}N_1(2n+2,2n+1,0), \end{aligned}$$

by (5.9) and Lemma 5.4. So the second identity in (5.17) follows.

By (B.1), (5.9), (5.5), the fifth identity in (5.8) and Lemma 5.4, we get

$$\begin{aligned}&\int _{\mathscr {H}^n}v_2^{00}Z_0{\Phi }Z_0{\Phi }dV=\int _{\mathscr {H}^n} \frac{4}{9}Q_{\gamma \lambda }^{\bar{\beta }}(q)Q_{\bar{\sigma } \bar{\mu }}^{\beta }(q)z^{\gamma }z^{\lambda }z^{\bar{\sigma }}z^{\bar{\mu }} \frac{n^2t^2}{|w+i|^{2n+4}}dV\\&\quad =\int _{-\infty }^{\infty }\int _0^{\infty }\frac{4n^2}{3(n+1)}(4\pi )^n \mathfrak {Q}\frac{r^{2n+3}t^2}{|t^2+i(1+r^2)|^{2n+4}}drdt\\&\quad =\frac{4n^2}{3(n+1)}(4\pi )^nN_1(2n+4,2n+3,2)\mathfrak {Q} =\frac{2n^2}{3(n+1)(n-1)}(4\pi )^nN_1(2n+2,2n+1,0)\mathfrak {Q}. \end{aligned}$$

So the third identity in (5.17) follows.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Wu, F. On the Yamabe problem on contact Riemannian manifolds. Ann Glob Anal Geom 56, 465–506 (2019). https://doi.org/10.1007/s10455-019-09675-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-019-09675-8

Keywords

Navigation