Skip to main content
Log in

Embedded loops in the hyperbolic plane with prescribed, almost constant curvature

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

Given a constant \(k>1\) and a real-valued function K on the hyperbolic plane \({\mathbb {H}}^2\), we study the problem of finding, for any \(\varepsilon \approx 0\), a closed and embedded curve \(u^\varepsilon \) in \({\mathbb {H}}^2\) having geodesic curvature \(k+\varepsilon K(u^\varepsilon )\) at each point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti, A., Badiale, M.: Variational perturbative methods and bifurcation of bound states from the essential spectrum. Proc. Roy. Soc. Edinburgh Sect. A 128(6), 1131–1161 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosetti, A., Li, Y., Malchiodi, A.: On the Yamabe problem and the scalar curvature problems under boundary conditions. Math. Ann. 322(4), 667–699 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosetti, A., Malchiodi, A.: Perturbation Methods and Semilinear Elliptic Problems on \({\mathbb{R}}^n\). Progress in Mathematics, vol. 240. Birkhäuser Verlag, Basel (2006)

    MATH  Google Scholar 

  4. Arnol’d, V.I.: The first steps of symplectic topology. Uspekhi Mat. Nauk 41(6(252)), 3–18, 229 (1986)

  5. Bethuel, F., Caldiroli, P., Guida, M.: Parametric surfaces with prescribed mean curvature. Rend. Semin. Mat. Univ. Politec. Torino 60 (2002), no. 4, 175–231 (2003)

  6. Caldiroli, P.: \(H\)-bubbles with prescribed large mean curvature. Manuscripta Math. 113(1), 125–142 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caldiroli, P., Musina, R.: \(H\)-bubbles in a perturbative setting: the finite-dimensional reduction method. Duke Math. J. 122(3), 457–484 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caldiroli, P., Musso, M.: Embedded tori with prescribed mean curvature. Adv. Math. 340, 406–458 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Contreras, G., Macarini, L., Paternain, G.P.: Periodic orbits for exact magnetic flows on surfaces. Int. Math. Res. Not. 8, 361–387 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fall, M.M.: Embedded disc-type surfaces with large constant mean curvature and free boundaries. Commun. Contemp. Math. 14(6), 1250037 (2012). 35 pp

    Article  MathSciNet  MATH  Google Scholar 

  11. Felli, V.: A note on the existence of \(H\)-bubbles via perturbation methods. Rev. Mat. Iberoam. 21(1), 163–178 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ginzburg, V.L.: New generalizations of Poincaré’s geometric theorem. Funktsional. Anal. i Prilozhen. 21(2), 16–22 (1987). 96

    Article  MathSciNet  MATH  Google Scholar 

  13. Ginzburg, V.L.: On the existence and non-existence of closed trajectories for some Hamiltonian flows. Math. Z. 223(3), 397–409 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jost, J.: Riemannian Geometry and Geometric Analysis. Universitext, 5th edn. Springer, Berlin (2008)

    MATH  Google Scholar 

  15. López, R.: Constant Mean Curvature Surfaces with Boundary. Springer Monographs in Mathematics. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  16. Mondino, A.: The conformal Willmore functional: a perturbative approach. J. Geom. Anal. 23(2), 764–811 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Musina, R.: The role of the spectrum of the Laplace operator on \(\mathbb{S}^2\) in the \(H\)-bubble problem. J. Anal. Math. 94, 265–291 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Musina, R.: Planar loops with prescribed curvature: existence, multiplicity and uniqueness results. Proc. Amer. Math. Soc. 139(12), 4445–4459 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Novikov, S.P., Taimanov, I.A.: Periodic extremals of multivalued or not everywhere positive functionals. Dokl. Akad. Nauk SSSR 274(1), 26–28 (1984)

    MathSciNet  MATH  Google Scholar 

  20. Schneider, M.: Closed magnetic geodesics on \(S^2\). J. Differential Geom. 87(2), 343–388 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schneider, M.: Closed magnetic geodesics on closed hyperbolic Riemann surfaces. Proc. Lond. Math. Soc. (3) 105(2), 424–446 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schlenk, F.: Applications of Hofer’s geometry to Hamiltonian dynamics. Comment. Math. Helv. 81(1), 105–121 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Taǐmanov, I.A.: Closed extremals on two-dimensional manifolds. Russian Math. Surveys 47(2), 163–211 (1992); translated from Uspekhi Mat. Nauk 47(2(284)), 143–185, 223 (1992)

  24. Ye, R.: Foliation by constant mean curvature spheres. Pacific J. Math. 147(2), 381–396 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous referee for her/his careful reading of the manuscript and for the valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Zuddas.

Additional information

Roberta Musina: Partially supported by Miur-PRIN Project 2015KB9WPT_001 and by Università di Udine, PRID Project VAPROGE.

Loops in the Euclidean plane

Loops in the Euclidean plane

The argument we used to prove Theorem 1.1 applies also in the easier Euclidean case. It is well known that the only embedded loops in \({\mathbb {R}}^2\) having prescribed constant curvature \(k>0\) are circles of radius 1 / k. We take as a reference circle the loop

$$\begin{aligned} \omega (x)=\frac{1}{k} ~x~,\qquad x\in {\mathbb {S}}^1\subset {\mathbb {R}}^2, \end{aligned}$$

which solves

$$\begin{aligned} u''=L(u) k~iu'~,\quad \text {where}\quad L(u):=\Big ({\mathop {\fint }\limits _{{\mathbb {S}}^1}}|u'|^2~\hbox {d}x\Big )^\frac{1}{2} \end{aligned}$$

(in fact, \(L(\omega )k=1\) and \(\omega ''=-\omega =i\omega '\)).

Let \(K\in C^1({\mathbb {R}}^2)\) be given. If a nonconstant function \(u\in C^2({\mathbb {S}}^1,{\mathbb {R}}^2)\) solves

$$\begin{aligned} u''=L(u)(k+\varepsilon K(u))~iu'~, \end{aligned}$$
(A.1)

then \(|u'|=L(u)\) is constant, and u parameterizes a loop in \({\mathbb {R}}^2\) having Euclidean curvature \(k+\varepsilon K\) at each point. Further, problem (A.1) admits a variational structure, see [5, 18]. More precisely, its nonconstant solutions are critical points of the energy functional

$$\begin{aligned} E_{k+\varepsilon K}(u)=\Big ({\mathop {\fint }\limits _{{\mathbb {S}}^1}}|u'|^2~\hbox {d}x\Big )^\frac{1}{2}+\varepsilon {\mathop {\fint }\limits _{{\mathbb {S}}^1}}Q(u)\cdot iu'~\hbox {d}x~,\quad u\in C^2({\mathbb {S}}^1,{\mathbb {R}}^2){\setminus }{\mathbb {R}}^2, \end{aligned}$$

where the vector field \(Q\in C^1({\mathbb {R}}^2,{\mathbb {R}}^2)\) satisfies \({\mathrm{div}}Q=K\).

Arguing as for Theorem 4.1, one can prove a necessary conditions for the existence of solutions to (A.1) for \(\varepsilon =\varepsilon _h\rightarrow 0\).

Theorem A.1

Let \(u_h\) be a \((k+\varepsilon _hK)\)-loop solving (A.1) for \(\varepsilon =\varepsilon _h\), and assume that

$$\begin{aligned} L(u_h)\rightarrow L_\infty >0, \qquad u_h\rightarrow U\hbox { uniformly, for some }U\in C^0({\mathbb {S}}^1,{\mathbb {R}}^2). \end{aligned}$$

Then, \(U(x)=\omega \big (\xi x^\mu )+z\) for some \(\mu \in {\mathbb {N}}\), \(\xi \in {\mathbb {S}}^1\) and \(z\in {\mathbb {R}}^2\) that is a critical point for the Melnikov function

$$\begin{aligned} F^{K}_k(z)=\int \limits _{D_{\frac{1}{k}}(z)}K(q)~\hbox {d}q~,\quad F^{K}_k:{\mathbb {R}}^2\rightarrow {\mathbb {R}}~. \end{aligned}$$

In the Euclidean case, we have the following existence result.

Theorem A.2

Let \(k>0\) and \(K\in C^1({\mathbb {R}}^2)\) be given. Assume that \(F^{K}_k\) has a stable critical point in an open set \(A\Subset {\mathbb {R}}^2\). Then, for every \(\varepsilon \in {\mathbb {R}}\) close enough to 0, there exists an embedded \((k+\varepsilon K)\)-loop \(u^\varepsilon :{\mathbb {S}}^1\rightarrow {\mathbb {R}}^2\).

Moreover, any sequence \(\varepsilon _h\rightarrow 0\) has a subsequence \(\varepsilon _{h_j}\) such that \(u^{\varepsilon _{h_j}}\rightarrow \omega _{z_0}\) in \(C^2({\mathbb {S}}^1,{\mathbb {R}}^2)\) as \(j\rightarrow \infty \), where \(z_0\in A\) is a critical point for \(F^{K}_k\).

Sketch of the proof

We introduce the three-dimensional space of embedded solutions to the unperturbed problem, namely

$$\begin{aligned} {\mathcal {S}}=\big \{ \omega \circ \xi +z~|~\xi \in {\mathbb {S}}^1~,~~z\in {\mathbb {R}}^2~\big \}, \end{aligned}$$

and the functions \(J_\varepsilon : C^2({\mathbb {R}},{\mathbb {R}}^2){\setminus }{\mathbb {R}}^2\rightarrow C^0({\mathbb {R}},{\mathbb {R}}^2)\), \(\varepsilon \in {\mathbb {R}}\), given by

$$\begin{aligned} J_\varepsilon (u)=-u'' +L(u)(k+\varepsilon K(u))~ iu'= J_0(u)+L(u) K(u)~ iu'. \end{aligned}$$

We have \({\mathcal {S}}\subset \{J_0=0\}\). Since \(\displaystyle {J'_0(\omega +z)\varphi = -\varphi ''+~i\varphi '-k^2\big ({\mathop {\fint }\limits _{{\mathbb {S}}^1}}\varphi \cdot \omega ~\hbox {d}x\big )\omega }\), it is quite easy to check that

$$\begin{aligned} T_{\omega +z}{\mathcal {S}}=\langle \omega ', e_1, e_2\rangle =\ker J'_0(\omega +z) \end{aligned}$$

and that \(J'_0(\omega +z):T_{\omega +z}{\mathcal {S}}^\perp \rightarrow T_{\omega +z}{\mathcal {S}}^\perp \) is invertible. The remaining part of the proof runs with minor changes. \(\square \)

Theorem 4.3 has its Euclidean correspondence as well. We omit the proof of the next result.

Theorem A.3

Let \(K\in C^1({\mathbb {R}}^2)\). Assume that K has a stable critical point in an open set \(A\Subset {\mathbb {R}}^2\). Then, there exists \(k_0>1\) such that for any fixed \(k>k_0\), and for every \(\varepsilon \) close enough to 0, there exists an embedded \((k+\varepsilon K)\)-loop \(u^{k,\varepsilon }:{\mathbb {S}}^1\rightarrow {\mathbb {R}}^2\).

Moreover, there exist sequences \(k_h\rightarrow \infty \), \(\varepsilon _h\rightarrow 0\) such that \(u^{k_h,\varepsilon _{h_j}}\rightarrow \omega _{z_0}\) in \(C^2({\mathbb {S}}^1,{\mathbb {R}}^2)\) as \(j\rightarrow \infty \), where \(z_0\in A\) is a critical point for K.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musina, R., Zuddas, F. Embedded loops in the hyperbolic plane with prescribed, almost constant curvature. Ann Glob Anal Geom 55, 509–528 (2019). https://doi.org/10.1007/s10455-018-9638-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-018-9638-9

Keywords

Navigation