Skip to main content
Log in

Rigidity of Riemannian manifolds with positive scalar curvature

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

For the Bach-flat closed manifold with positive scalar curvature, we prove a rigidity theorem involving the Weyl curvature and the traceless Ricci curvature. Moreover, we provide a similar rigidity result with respect to the \(L^{\frac{n}{2}}\)-norm of the Weyl curvature, the traceless Ricci curvature, and the Yamabe invariant. In particular, we also obtain rigidity results in terms of the Euler–Poincaré characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Besse, A.L.: Einstein Manifolds. Springer-Verlag, Berlin (2008)

    MATH  Google Scholar 

  2. Bach, R.: Zur Weylschen Relativitätstheorie und der Weylschen Erweiterung des Krümmungstensorbegriffs. Math. Z. 9, 110–135 (1921)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barros, A., Diógenes, R., Ribeiro Jr., E.: Bach-flat critical metrics of the volume functional on 4-dimensional manifolds with boundary. J. Geom. Anal. 25, 2698–2715 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bour, V.: Fourth order curvature flows and geometric applications. arXiv:1012.0342 [math.DG] (2010)

  5. Bourguignon, J.-P.: The “magic” of Weitzenböck formulas, Variational methods (Paris, 1988), pp.. 251–271, Progress in Nonlinear Differential Equations and their Applications, vol. 4, Birkhäuser Boston, Boston (1990)

  6. Calderbank, D., Gauduchon, P., Herzlich, M.: Refined Kato inequalities and conformal weights in Riemannian geometry. J. Funct. Anal. 173, 214–255 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cao, H.-D., Chen, Q.: On Bach-flat gradient shrinking Ricci solitons. Duke Math. J. 162, 1149–1169 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Catino, G.: Integral pinched shrinking Ricci solitons. Adv. Math. 303, 279–294 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Derdzinski, A.: Self-dual Kähler manifolds and Einstein manifolds of dimension four. Compos. Math. 49, 405–433 (1983)

    MathSciNet  MATH  Google Scholar 

  10. do Carmo, M.P.: Riemannian Geometry, Mathematics: Theory & Applications. Birkhäuser, Boston (1992). (translated from the second Portuguese edition by Francis Flaherty)

    Book  Google Scholar 

  11. Fang, Y., Yuan, W.: A sphere theorem for Bach-flat manifolds with positive constant scalar curvature. arXiv:1704.06633

  12. Fu, H.-P., Xiao, L.-Q.: Rigidity theorem for integral pinched shrinking Ricci solitons. arXiv:1510.07121

  13. Hebey, E., Vaugon, M.: Effective \(L_p\) pinching for the concircular curvature. J. Geom. Anal. 6, 531–553 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huang, G.Y.: Integral pinched gradient shrinking \(\rho \)-Einstein solitons. J. Math. Anal. Appl. 451, 1045–1055 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yuan, W.: Volume comparision with respect to scalar curvature. arXiv:1609.08849

Download references

Acknowledgements

The author want to thank the referee for helpful suggestions which make the paper more readable. He also want to thank Professor Xingxiao Li for stimulating discussions on this subject.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyue Huang.

Additional information

The research of the author is supported by NSFC (Nos. 11371018, 11671121).

Appendix: The proof of Corollaries 1.3 and 1.5

Appendix: The proof of Corollaries 1.3 and 1.5

In this appendix section, we provide the details in proving Corollaries 1.3 and 1.5. For this, the following lemma by Catino [8, Lemma 4.1] is needed:

Lemma 4.1

Let \((M^4,g)\) be a closed manifold. Then

$$\begin{aligned} \begin{aligned} Y^2(M,[g])\ge \int _M(R^2-12|\mathring{R}_{ij}|^2)\,\mathrm{d}V_g, \end{aligned}\end{aligned}$$
(4.1)

with the inequality is strict unless \((M^4,g)\) is conformally Einstein.

By using (4.1), the pinching condition (1.9) can be written as

$$\begin{aligned} \begin{aligned}&\int _M(|W|^2+|\mathring{R}_{ij}|^2)\,\mathrm{d}V_g <\frac{1}{48}Y^2(M,[g]). \end{aligned}\end{aligned}$$
(4.2)

It follows that

$$\begin{aligned} \begin{aligned}&\int _M(|W|^2+|\mathring{R}_{ij}|^2)\,\mathrm{d}V_g-\frac{1}{48}Y^2(M,[g])\\&\quad <\int _M\Big (|W|^2+\frac{5}{4}|\mathring{R}_{ij}|^2-\frac{1}{48}R^2\Big )\,\mathrm{d}V_g, \end{aligned}\end{aligned}$$
(4.3)

from which Corollary 1.3 follows immediately.

On the other hand, (1.12) can be written as

$$\begin{aligned} \begin{aligned} \int _M(|W|^2+4|\mathring{R}_{ij}|^2)\,\mathrm{d}V_g<\frac{25}{486}Y^2(M,[g]) \end{aligned}\end{aligned}$$
(4.4)

which combined with (4.1) gives

$$\begin{aligned} \begin{aligned}&\int _M(|W|^2+4|\mathring{R}_{ij}|^2)\,\mathrm{d}V_g-\frac{25}{486}Y^2(M,[g])\\&\quad < \int _M\Big (|W|^2+\frac{374}{81}|\mathring{R}_{ij}|^2-\frac{25}{486}R^2\Big )\,\mathrm{d}V_g, \end{aligned}\end{aligned}$$
(4.5)

which completes the proof of Corollary 1.5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, G. Rigidity of Riemannian manifolds with positive scalar curvature. Ann Glob Anal Geom 54, 257–272 (2018). https://doi.org/10.1007/s10455-018-9600-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-018-9600-x

Keywords

Mathematics Subject Classification

Navigation