Skip to main content
Log in

The dual superconformal surface

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

It is shown that a superconformal surface with arbitrary codimension in flat Euclidean space has a (necessarily unique) dual superconformal surface if and only if the surface is S-Willmore, the latter a well-known necessary and sufficient condition to allow a dual as shown by Ma (Results Math 48:301–309, 2005). Duality means that both surfaces envelope the same central sphere congruence and are conformal with the induced metric. Our main result is that the dual surface to a superconformal surface can easily be described in parametric form in terms of a parametrization of the latter. Moreover, it is shown that the starting surface is conformally equivalent, up to stereographic projection in the nonflat case, to a minimal surface in a space form (hence, S-Willmore) if and only if either the dual degenerates to a point (flat case) or the two surfaces are conformally equivalent (nonflat case).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blaschke, W.: Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie, III: Differentialgeometrie der Kreise und Kugeln. Springer, Berlin (1929)

    Book  MATH  Google Scholar 

  2. Bolton, J., Pedit, F., Woodward, L.: Minimal surfaces and the affine Toda field model. J. Reine Angew. Math. 459, 119–150 (1995)

    MATH  MathSciNet  Google Scholar 

  3. Bryant, R.: Conformal and minimal immersions of compact surfaces into the \(4\)-sphere. J. Differ. Geom. 17, 455–473 (1982)

    MATH  Google Scholar 

  4. Bryant, R.: A duality theorem for Willmore surfaces. J. Differ. Geom. 20, 23–53 (1984)

    MATH  Google Scholar 

  5. Chen, C.C.: The generalized curvature ellipses and minimal surfaces. Bull. Acad. Sin. 11, 329–336 (1983)

    MATH  Google Scholar 

  6. Dajczer, M., Gromoll, D.: The Weierstrass representation for complete minimal real Kaehler submanifolds. Invent. Math. 119, 235–242 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dajczer, M., Tojeiro, R.: Commuting Codazzi tensors and the Ribaucour Transformation for submanifolds. Result. Math. 44, 258–278 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dajczer, M., Tojeiro, R.: All superconformal surfaces in \(R^4\) in terms of minimal surfaces. Math. Z. 261, 869–890 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dorfmeister, J., Wang, P.: Willmore surfaces in \({\mathbb{S}}^{n+2}\) by the loop group method: generic cases and some examples. arXiv:1305.2514

  10. Ejiri, N.: Willmore surfaces with a duality in \({\mathbb{S}}^n(1)\). Proc. Lond. Math. Soc. 57, 383–416 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  11. Guadalupe, I., Rodríguez, L.: Normal curvature of surfaces in space forms. Pac. J. Math. 106, 95–103 (1983)

    Article  MATH  Google Scholar 

  12. Hélein, F.: Willmore immersions and loop groups. J. Differ. Geom. 50, 331–385 (1998)

    MATH  Google Scholar 

  13. Hertrich-Jeromin, U.: Introduction to Möbius differential geometry, London Math. Lect. Notes Series, vol. 300. Cambridge University Press, Cambridge (2003)

  14. Ma, X.: Isothermic and \(S\)-Willmore surfaces as solutions to a problem of Blaschke. Results Math. 48, 301–309 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Miyaoka, R.: The family of isometric superconformal harmonic maps and the affine Toda equations. J. Reine Angew. Math. 481, 1–25 (1996)

    MATH  MathSciNet  Google Scholar 

  16. Moore, C., Wilson, E.: A general theory of surfaces. J. Natl. Acad Proc. 2, 273–278 (1916)

    Article  Google Scholar 

  17. Moore, C., Wilson, E.: Differential geometry of two-dimensional surfaces in hyperspaces. Proc. Acad. Arts Sci. 52, 267–368 (1916)

  18. Rouxel, B.: Harmonic spheres of a submanifold in Euclidean space. In: Proceedings of the 3rd Congress of Geometry, Thessaloniki, pp. 357–364 (1991)

  19. Thomsen, G.: Über konforme Geometrie I: Grundlagen der konformen Flächentheorie. Hamb. Math. Abh. 3, 31–56 (1923)

    Article  MATH  MathSciNet  Google Scholar 

  20. Vlachos, Th: Minimal surfaces, Hopf differentials and the Ricci condition. Manuscr. Math. 126, 201–230 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Vlachos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dajczer, M., Vlachos, T. The dual superconformal surface. Ann Glob Anal Geom 48, 1–22 (2015). https://doi.org/10.1007/s10455-015-9453-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-015-9453-5

Keywords

Navigation