Skip to main content
Log in

Spinorial representation of surfaces into 4-dimensional space forms

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

In this paper we give a geometrically invariant spinorial representation of surfaces in four-dimensional space forms. In the Euclidean space, we obtain a representation formula which generalizes the Weierstrass representation formula of minimal surfaces. We also obtain as particular cases the spinorial characterizations of surfaces in \(\mathbb R ^3\) and in \(S^3\) given by Friedrich and by Morel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bär, C.: Extrinsic bounds for the eigenvalues of the Dirac operator. Ann. Glob. Anal. Geom. 16, 573–596 (1998)

    Article  MATH  Google Scholar 

  2. Bayard, P.: On the spinorial representation of spacelike surfaces into 4-dimensional Minkowski space. preprint (2012), arXiv:1212.3543

  3. Friedrich, T.: On surfaces in four-space. Ann. Glob. Anal. Geom. 2, 257–287 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Friedrich, T.: On the spinor representation of surfaces in Euclidean \(3\)-space. J. Geom. Phys. 28, 143–157 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ginoux, N., Morel, B.: On eigenvalue estimates for the submanifold Dirac operator. Int. J. Math. 13(5), 533–548 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hijazi, O., Zhang, X.: Lower bounds for the eigenvalues of the Dirac operator, Part II. The submanifold Dirac operator. Ann. Glob. Anal. Geom. 20, 163–181 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Konopelchenko, B.G.: Weierstrass representations for surfaces in 4D spaces and their integrable deformations via DS hierarchy. Ann. Glob. Anal. Geom. 18, 61–74 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kusner, R., Schmidt, N.: The spinor representation of surfaces in space. Preprint (1996), arxiv dg-ga/9610005

  9. Lawn, M.A.: A spinorial representation for Lorentzian surfaces in \(\mathbb{R}^{2,1}\). J. Geom. Phys. 58(6), 683–700 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lawn, M.A., Roth, J.: Spinorial characterization of surfaces in pseudo-Riemannian space forms. Math. Phys. Anal. Geom. 14(3), 185–195 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lawson, H.B.: The global behaviour of minimal surfaces in \(S^n\). Ann. Math. 92(2), 224–237 (1970)

    Article  MATH  Google Scholar 

  12. Morel, B.: Surfaces in \(\mathbb{S}^3\) and \(\mathbb{H}^3\) via spinors. Actes du séminaire de théorie spectrale, Institut Fourier, Grenoble 23, 9–22 (2005)

  13. Roth, J.: Spinorial characterizations of surfaces into 3-homogeneous manifolds. J. Geom. Phys. 60, 1045–1061 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Taimanov, I.: Surfaces of revolution in terms of solitons. Ann. Glob. Anal. Geom. 15, 410–435 (1997)

    Article  MathSciNet  Google Scholar 

  15. Taimanov, I.: Surfaces in the four-space and the Davey–Stewartson equations. J. Geom Phys. 56, 1235–1256 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tenenblat, K.: On isometric immersions of Riemannian manifolds. Bol. Soc. Brasil. Mat. 2(2), 23–36 (1971)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Amélie Lawn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayard, P., Lawn, MA. & Roth, J. Spinorial representation of surfaces into 4-dimensional space forms. Ann Glob Anal Geom 44, 433–453 (2013). https://doi.org/10.1007/s10455-013-9375-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-013-9375-z

Keywords

Mathematics Subject Classification (2000)

Navigation