Skip to main content
Log in

Integration of locally exponential Lie algebras of vector fields

  • Original Paper
  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

A locally convex Lie algebra \({\mathfrak g}\) is said to be locally exponential if it belongs to some local Lie group in canonical coordinates. In this note we give criteria for locally exponential Lie algebras of vector fields on an infinite-dimensional manifold to integrate to global Lie group actions. Moreover, we show that all necessary conditions are satisfied if the manifold is finite-dimensional connected and σ-compact, which leads to a generalization of Palais’ Integrability Theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertram W., Glöckner H. and Neeb K.-H. (2004). Differential calculus over general base fields and rings. Expo. Math. 22: 213–282

    MATH  MathSciNet  Google Scholar 

  2. van Est W.T. and Korthagen Th.J. (1964). Non enlargible Lie algebras. Proc. Kon. Ned. Acad. v. Wet. Series A, Indag. Math. 26: 15–31

    Google Scholar 

  3. Glöckner H. (2002). Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups. J. Funct. Anal. 194: 347–409

    Article  MATH  MathSciNet  Google Scholar 

  4. Glöckner, H., Neeb, K.H.: Infinite-Dimensional Lie Groups. (in preparation)

  5. Grabowski J. (1993). Derivative of the exponential mapping for infinite-dimensional Lie groups. Ann. Global Anal. Geom. 11(3): 213–220

    MATH  MathSciNet  Google Scholar 

  6. Kriegl, A., Michor, P.: The Convenient Setting of Global Analysis. Math. Surveys and Monographs, vol. 53. Amer. Math. Soc. (1997)

  7. Lang S. (1999). Fundamentals of Differential Geometry. Graduate Texts in Math., vol. 191. Springer- Verlag, Berlin

    Google Scholar 

  8. Leslie J. (1967). On a differential structure for the group of diffeomorphisms. Topology 6: 263–271

    Article  MATH  MathSciNet  Google Scholar 

  9. Leslie J. (1968). Some Frobenius theorems in global analysis. J. Diff. Geom. 2: 279–297

    MATH  MathSciNet  Google Scholar 

  10. Milnor J. (1984). Remarks on infinite-dimensional Lie groups. In: DeWitt, B. and Stora, R. (eds) Relativité, groupes et topologie II (Les Houches, 1983), pp 1007–1057. Elsevier, North Holland, Amsterdam

    Google Scholar 

  11. Neeb K.H. (2006). Towards a Lie theory of locally convex groups. Jap. J. Math. 3rd series 1(2): 291–468

    MathSciNet  MATH  Google Scholar 

  12. Omori, H.: Infinite-Dimensional Lie Transformations Groups. Lecture Notes in Math., vol. 427. Springer-Verlag (1974)

  13. Omori H. (1978). On Banach-Lie groups acting on finite-dimensional manifolds. Tôhoku Math. J. 30: 223–250

    Article  MATH  MathSciNet  Google Scholar 

  14. Omori H. (1980). A method of classifying expansive singularities. J. Diff. Geom. 15: 493–512

    MATH  MathSciNet  Google Scholar 

  15. Omori H. (1981). A remark on non-enlargible Lie algebras. J. Math. Soc. Japan 33(4): 707–710

    Article  MATH  MathSciNet  Google Scholar 

  16. Omori H. and de la Harpe P. (1972). About interactions between Banach–Lie groups and finite dimensional manifolds. J. Math. Kyoto Univ. 12: 543–570

    MATH  MathSciNet  Google Scholar 

  17. Palais, R.S.: A Global Formulation of the Lie Theory of Transformation Groups. Mem. Amer. Math. Soc., vol. 22 (1957)

  18. Pestov V.G. (1995). Regular Lie groups and a theorem of Lie-Palais. J. Lie Theory 5(2): 173–178

    MATH  MathSciNet  Google Scholar 

  19. Robart T. (1997). Sur l’intégrabilité des sous-algèbres de Lie en dimension infinie. Canad. J. Math. 49(4): 820–839

    MATH  MathSciNet  Google Scholar 

  20. Souriau J.-M. (1984). Groupes différentiels de physique mathématique. In: Dazord, P. and Desolneux-Moulis, N. (eds) Feuilletages et Quantification Géometrique. J. lyonnaises Soc. math. France 1983, Sémin. sud-rhodanien de géom. II, pp 73–119. Hermann, Paris

    Google Scholar 

  21. Souriau, J.-M.: Un algorithme générateur de structures quantiques. Soc. Math. Fr. Astérisque, hors série, 341–399 (1985)

  22. Wockel Chr. (2007). Lie group structure on symmetry groups of principal bundles. J. Funct. Anal. 251: 254–288

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abouqateb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abouqateb, A., Neeb, KH. Integration of locally exponential Lie algebras of vector fields. Ann Glob Anal Geom 33, 89–100 (2008). https://doi.org/10.1007/s10455-007-9080-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-007-9080-x

Keywords

Mathematics Subject Index 2000

Navigation