Skip to main content
Log in

Solvable Algebras and Integrable Systems

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

This paper discusses a range of questions concerning the application of solvable Lie algebras of vector fields to exact integration of systems of ordinary differential equations. The set of \(n\) independent vector fields generating a solvable Lie algebra in \(n\)-dimensional space is locally reduced to some “canonical” form. This reduction is performed constructively (using quadratures), which, in particular, allows a simultaneous integration of \(n\) systems of differential equations that are generated by these fields. Generalized completely integrable systems are introduced and their properties are investigated. General ideas are applied to integration of the Hamiltonian systems of differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kozlov, V. V., Tensor Invariants and Integration of Differential Equations, Russian Math. Surveys, 2019, vol. 74, no. 1, pp. 111–140; see also: Uspekhi Mat. Nauk, 2019, vol. 74, no. 1, pp. 117-148.

    Article  MathSciNet  Google Scholar 

  2. Kaplansky, I., An Introduction to Differential Algebra, 2nd ed., Actualites Scientifiques et Industrielles, No. 1251, Paris: Hermann, 1976.

    Google Scholar 

  3. Kozlov, V. V., The Euler – Jacobi – Lie Integrability Theorem, Regul. Chaotic Dyn., 2013, vol. 18, no. 4, pp. 329–343.

    Article  MathSciNet  Google Scholar 

  4. Olver, P. J., Applications of Lie Groups to Differential Equations, 2nd ed., Grad. Texts in Math., vol. 107, New York: Springer, 1993.

    Google Scholar 

  5. Borisov, A. V. and Mamaev, I. S., Modern Methods of the Theory of Integrable Systems, Moscow: R&C Dynamics,, ICS, 2003 (Russian).

    Google Scholar 

  6. Bogoyavlensky, O. I., Extended Integrability and Bi-Hamiltonian Systems, Comm. Math. Phys., 1998, vol. 196, no. 1, pp. 19–51.

    Article  MathSciNet  Google Scholar 

  7. Kozlov, V. V., The Liouville Property of Invariant Measures of Completely Integrable Systems, and the Monge – Ampère Equation, Math. Notes, 1993, vol. 53, no. 3–4, pp. 389–393; see also: Mat. Zametki, 1993, vol. 53, no. 4, pp. 45-52, 157.

    Article  MathSciNet  Google Scholar 

  8. Kozlov, V. V., Quadratic Conservation Laws for Equations of Mathematical Physics, Russian Math. Surveys, 2020, vol. 75, no. 3, pp. 445–494; see also: Uspekhi Mat. Nauk, 2020, vol. 75, no. 3, pp. 55-106.

    Article  MathSciNet  Google Scholar 

  9. Polekhin, I. Yu., On the Dynamics and Integrability of the Ziegler Pendulum, Nonlinear Dyn., 2024, vol. 112, pp. 6847-6858.

    Article  Google Scholar 

  10. Serre, J.-P., Lie Algebras and Lie Groups, Lect. Notes Math., vol. 1500, Berlin: Springer, 2006.

    Google Scholar 

  11. Chebotarev, N. G., Theory of Lie Groups, Moscow: Gostekhizdat, 1940 (Russian).

    Google Scholar 

  12. Kozlov, V. V., Remarks on a Lie Theorem on the Exact Integrability of Differential Equations, Differ. Equ., 2005, vol. 41, no. 4, pp. 588–590; see also: Differ. Uravn., 2005, vol. 41, no. 4, pp. 553-555.

    Article  MathSciNet  Google Scholar 

  13. Auslander, L., Green, L., and Hahn, F., Flows on Homogeneous Spaces, Ann. Math. Stud., No. 53, Princeton, N.J.: Princeton Univ. Press, 1963.

    Google Scholar 

  14. Anzai, H., Ergodic Skew Product Transformations on the Torus, Osaka Math. J., 1951, vol. 3, no. 1, pp. 83–99.

    MathSciNet  Google Scholar 

  15. Cornfeld, I. P., Fomin, S. V., and Sinai, Ya. G., Ergodic Theory, Grundlehren Math. Wiss., vol. 245, New York: Springer, 1982.

    Google Scholar 

  16. Jacobi, C. G. J., Vorlesungen über Dynamik, in Gesammelte Werke: Supplementband, Berlin: Reimer, 1884.

    Google Scholar 

  17. Moser, J., Three Integrable Hamiltonian Systems Connected with Isospectral Deformations, Adv. Math., 1975, vol. 16, no. 2, pp. 197–220.

    Article  MathSciNet  Google Scholar 

  18. Calogero, F., Exactly Solvable One-Dimensional Many-Body Problems, Lett. Nuovo Cimento (2), 1975, vol. 13, no. 11, pp. 411–416.

    Article  MathSciNet  Google Scholar 

  19. Perelomov, A. M., Integrable Systems of Classical Mechanics and Lie Algebras: Vol. 1, Basel: Birkhäuser, 1990.

    Book  Google Scholar 

  20. Novikov, S. P. and Taimanov, I. A., Modern Geometric Structures and Fields, Grad. Stud. Math., vol. 71, Providence, R.I.: AMS, 2006.

    Google Scholar 

  21. Huang, K., Shi, S., and Yang, S., Differential Galoisian Approach to Jacobi Integrability of General Analytic Dynamical Systems and Its Application, Sci. China Math., 2023, vol. 66, no. 7, pp. 1473–1494.

    Article  MathSciNet  Google Scholar 

  22. Zung, Nguyen Tien, Non-Degenerate Singularities of Integrable Dynamical Systems, Ergodic Theory Dynam. Systems, 2015, vol. 35, no. 3, pp. 994–1008.

    Article  MathSciNet  Google Scholar 

  23. Cariñena, J. F., Falceto, F., and Grabowski, J., Solvability of a Lie Algebra of Vector Fields Implies Their Integrability by Quadratures, J. Phys. A, 2016, vol. 49, no. 42, 425202, 13 pp.

    Article  MathSciNet  Google Scholar 

  24. Kozlov, V. V. and Kolesnikov, N. N., Integrability of Hamiltonian Systems, Mosc. Univ. Mech. Bull., 1979, vol. 34, no. 5–6, pp. 48–51; see also: Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., 1979, vol. 6, pp. 88-91, 109.

    Google Scholar 

  25. Azuaje, R., Lie Integrability by Quadratures for Symplectic, Cosymplectic, Contact and Cocontact Hamiltonian Systems, Rep. Math. Phys., 2024, vol. 93, no. 1, pp. 37–56.

    Article  MathSciNet  Google Scholar 

  26. Lie, S., Theorie der Transformationsgruppen: Vol. 2, Leipzig: Teubner, 1890.

    Google Scholar 

  27. Kozlov, V. V., Integrals of Circulatory Systems Which are Quadratic in Momenta, Regul. Chaotic Dyn., 2021, vol. 26, no. 6, pp. 647–657.

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project 21-71-30011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery V. Kozlov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

PUBLISHER’S NOTE

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

MSC2010

34C14, 37J35

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlov, V.V. Solvable Algebras and Integrable Systems. Regul. Chaot. Dyn. (2024). https://doi.org/10.1134/S1560354724520022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1560354724520022

Keywords

Navigation