Skip to main content
Log in

Willmore surfaces of constant Möbius curvature

  • Original Paper
  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We study Willmore surfaces of constant Möbius curvature \({\mathcal{K}}\) in \({\mathbb{S}}^4\) . It is proved that such a surface in \({\mathbb{S}}^3\) must be part of a minimal surface in \({\mathbb{R}}^3\) or the Clifford torus. Another result in this paper is that an isotropic surface (hence also Willmore) in \({\mathbb{S}}^4\) of constant \({\mathcal{K}}\) could only be part of a complex curve in \({\mathbb{C}}^2 \cong {\mathbb{R}}^4\) or the Veronese 2-sphere in \({\mathbb{S}}^4\) . It is conjectured that they are the only possible examples. The main ingredients of the proofs are over-determined systems and isoparametric functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alias L. and Palmer B. (1996). Conformal geometry of surfaces in Lorentzian space forms. Geom. Dedicata 60: 301–315

    MATH  MathSciNet  Google Scholar 

  2. Blaschke W. (1929). Vorlesungen über Differentialgeometrie III: Differentialgeometrie der Kreise und Kugeln. Springer Grundlehren XXIX, Berlin

    MATH  Google Scholar 

  3. Bryant R. (1984). A duality theorem for Willmore surfaces. J. Diff. Geom. 20: 23–53

    MATH  Google Scholar 

  4. Bryant R. (1985). Minimal surfaces of constant curvature in S n. Trans. Am. Math. Soc. 290(1): 259–271

    Article  MATH  Google Scholar 

  5. Burstall F., Ferus D., Leschke K., Pedit F. and Pinkall U. (2002). Conformal Geometry of Surfaces in S 4 and Quaternions. Lecture Notes in Math. 1772. Springer, Berlin

    Google Scholar 

  6. Burstall F., Pedit F., Pinkall U.: Schwarzian derivatives and flows of surfaces. In: Differential Geometry and Integrable System. (Tokyo, 2000), Contemp. Math. 308, Amer. Math. Soc., Providence, RI, pp. 39–61 (2002)

  7. Calabi E. (1967). Minimal immersions of surfaces in Euclidean spheres. J. Diff. Geom. 1: 111–125

    MATH  MathSciNet  Google Scholar 

  8. Chi, Q., Jensen, G., Liao, R.: Isoparametric functions and flat minimal tori in \({\mathbb{C}}P^2\) . Proc. Am. Math. Soc. 123(9), 2849–2854 (1995)

    Google Scholar 

  9. Eisenhart L. (1947). An Introduction to Differential Geometry. Princeton, NJ

    MATH  Google Scholar 

  10. Fujiki M. (1986). On the Gauss map of minimal surfaces immersed in R n. Kodai Math. J. 9(1): 44–49

    Article  MATH  MathSciNet  Google Scholar 

  11. Gorokh V.: Two-dimensional minimal surfaces in a pseudo-Euclidean space. Ukrain. Geom. Sb. 31, 36–47 (1988); translation in J. Soviet Math. 54(1), 691–699 (1991)

  12. Gorokh, V.: Minimal surfaces of constant Gaussian curvature in a pseudo-Riemannian sphere. Ukrain. Geom. Sb. 32, 27–34 (1989); translation in J. Soviet Math. 59(2), 709–714 (1992)

  13. Hertrich-Jeromin U., Musso E. and Nicolodi L. (2001). Möbius geometry of surfaces of constant mean curvature 1 in hyperbolic space. Ann. Global Anal. Geom. 19(2): 185–205

    Article  MATH  MathSciNet  Google Scholar 

  14. Hoffman, D., Osserman, R.: The geometry of the generalized Gauss map. Mem. Am. Math. Soc. 236 (1980)

  15. Kenmotsu K. (1976). On minimal immersions of R 2 into S n. J. Math. Soc. Japan 28: 182–191

    Article  MATH  MathSciNet  Google Scholar 

  16. Kenmotsu K. (1983). Minimal surfaces with constant curvature in 4-dimensional space forms. Proc. Am. Math. Soc. 89(1): 133–138

    Article  MATH  MathSciNet  Google Scholar 

  17. Kenmotsu K. and Masuda K. (2000). On minimal surfaces of constant curvature in two-dimensional complex space forms. J. Reine Angew. Math. 523: 69–101

    MATH  MathSciNet  Google Scholar 

  18. Lawson H.B. (1971). The Riemannian geometry of holomorphic curves. Bol. Soc. Brasil. Mat. 2(1): 45–62

    Article  MATH  MathSciNet  Google Scholar 

  19. Li H., Wang C. and Wu F. (2001). A Moebius characterization of Veronese surfaces in S n. Math. Ann. 319: 707–714

    Article  MATH  MathSciNet  Google Scholar 

  20. Li, H., Wang, C., Zhao, G.: A new Möbius invariant function for surfaces in S 3. preprint, 2003.

  21. Ma X. (2005). Isothermic and S-Willmore surfaces as solutions to a problem of Blaschke. Results Math. 48(3–4): 301–309

    MATH  MathSciNet  Google Scholar 

  22. Masaltsev L. (1984). Minimal surfaces in R 5 whose Gaussian image has a constant curvature. Mat. Zametki 35(6): 927–932

    MathSciNet  Google Scholar 

  23. Nie, C., Ma, X., Wang, C.: Conformal CMC-surfaces in Lorentzian space forms. Chin. Ann. Math. Ser. B (to appear)

  24. Palmer B. (1991). The conformal Gauss map and the stability of Willmore surfaces. Ann. Global Anal. Geom. 9(3): 305–317

    Article  MATH  MathSciNet  Google Scholar 

  25. Sakaki M. (1992). Exceptional minimal surfaces whose Gauss images have constant curvature. Tokyo J. Math. 15: 381–388

    Article  MATH  MathSciNet  Google Scholar 

  26. Sakaki M. (1994). Minimal 2-tori in S 4 whose Gauss images have constant curvature. Arch. Math. 62(5): 470–474

    Article  MATH  MathSciNet  Google Scholar 

  27. Sakaki M. (2001). A note on minimal surfaces in R n whose Gauss images have constant curvature. Bull. Fac. Sci. Technol. Hirosaki Univ. 3(2): 79–82

    MATH  MathSciNet  Google Scholar 

  28. Sulanke, R.: Möbius geometry. VII. On channel surfaces. In: Proceedings of the 3rd Congress of Geometry. Thessaloniki, 1991, pp. 410–419. Aristotle Univ. Thessaloniki, Thessaloniki (1992)

  29. Vlachos T. (2000). The third fundamental form of minimal surfaces in a sphere. Arch. Math. 74: 66–74

    Article  MATH  MathSciNet  Google Scholar 

  30. Vlachos T. (2005). A characterization of the Clifford torus. Arch. Math. 85: 175–182

    Article  MATH  MathSciNet  Google Scholar 

  31. Wang C. (1998). Moebius geometry of submanifolds in S n. Manuscripta Math. 96: 517–534

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Ma.

Additional information

This work is partially supported by RFDP (No. 20040001034).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, X., Wang, C. Willmore surfaces of constant Möbius curvature. Ann Glob Anal Geom 32, 297–310 (2007). https://doi.org/10.1007/s10455-007-9065-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-007-9065-9

Keywords

Mathematics Subject Classification (2000)

Navigation