Skip to main content
Log in

Abundance and health risk of bioaerosols in the coastal areas of Qingdao, China

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Bioaerosols can be spread through coughing, sneezing, respiratory droplets and aerosol particles, and public awareness of the health risks of bioaerosols has increased. Based on bioaerosol culturable microbe concentration data collected from March–December in 2015, 2018 and 2019, the health risks of bioaerosols were assessed by air quality level, month, population, and particle size using an average daily dose rate model. The concentration of culturable microorganisms is related to the air quality index (AQI). Under AQI values ranging from 51–100, the concentration of culturable microorganisms was the highest, while the concentration of culturable microorganisms was the lowest for AQI values ranging from 101–150. The health risk in June and July 2015 was the highest, the change trends in 2018 and 2019 were similar, the health risk was the highest in October, and the health risk of bioaerosols along the inhalation route was 103–104 times that along the exposure route. The health risk of bioaerosols was generally higher in summer and autumn than in spring and winter over the three-year period. The health risk for different categories of individuals indicated the same trend over the 3-year period, with the health risk for adults exceeding that for children and the health risk for men exceeding that for women. The health risk of bioaerosols was high under particle sizes ranging from 1.10–4.70 μm. The study results could provide data support for the analysis of bioaerosol-related health risks and offer a reference for the prevention and control of urban microbial diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Andersen. (1958). New sampler for the collection, sizing, and enumeration of viable airborne particles. Bacteriol, 76, 471–484. https://doi.org/10.1128/jb.76.5.471-484.1958

    Article  CAS  Google Scholar 

  • Bowers, R. M., Sullivan, A. P., Costello, E. K., Collett, J. L., Knight, R., & Fierer, N. (2011). Sources of bacteria in outdoor air across cities in the Midwestern United States. Applied and Environment Microbiology, 77, 6350–6356. https://doi.org/10.1128/AEM.05498-11

    Article  CAS  Google Scholar 

  • Chakravarty, D., Nair, S. S., Hammouda, N., Ratnani, P., Gharib, Y., Wagaskar, V., Mohamed, N., Lundon, D., Dovey, Z., Kyprianou, N., et al. (2020). Sex differences in SARS-CoV-2 infection rates and the potential link to prostate cancer. Commun Biol, 3, 1–12. https://doi.org/10.1038/s42003-020-1088-9

    Article  CAS  Google Scholar 

  • Dybwad, M., Skogan, G., & Blatny, J. M. (2014). Temporal variability of the bioaerosol background at a subway station: concentration level, size distribution, and diversity of airborne bacteria. Applied and Environment Microbiology, 80, 257–270. https://doi.org/10.1128/AEM.02849-13

    Article  CAS  Google Scholar 

  • Fan, X. Y., Gao, J. F., Pan, K. L., Li, D. C., Dai, H. H., & Li, X. (2019). More obvious air pollution impacts on variations in bacteria than fungi and their co-occurrences with ammonia-oxidizing microorganisms in PM2.5. Environmental Pollution, 251, 668–680. https://doi.org/10.1016/j.envpol.2019.05.004

    Article  CAS  Google Scholar 

  • Faridi, S., Naddafi, K., Kashani, H., Nabizadeh, R., Alimohammadi, M., Momeniha, F., Faridi, S., Niazi, S., Zare, A., Gholampour, A., Hoseini, M., Pourpak, Z., Hassanvand, M. S., & Yunesian, M. (2017). Bioaerosol exposure and circulating biomarkers in a panel of elderly subjects and healthy young adults. Science of the Total Environment, 593–594, 380–389. https://doi.org/10.1016/j.scitotenv.2017.03.186

    Article  CAS  Google Scholar 

  • Fröhlich-Nowoisky, J., Kampf, C. J., Weber, B., Huffman, J. A., Pöhlker, C., Andreae, M. O., Lang-Yona, N., Burrows, S. M., Gunthe, S. S., Elbert, W., Su, H., Hoor, P., Thines, E., Hoffmann, T., Després, V. R., & Pöschl, U. (2016). Bioaerosols in the earth system: Climate, health, and ecosystem interactions. Atmospheric Research, 182, 346–376. https://doi.org/10.1016/j.atmosres.2016.07.018

    Article  CAS  Google Scholar 

  • Gao, M., Qiu, T., Jia, R., Han, M., Song, Y., & Wang, X. (2015). Concentration and size distribution of viable bioaerosols during non-haze and haze days in Beijing. Environmental Science and Pollution Research, 22, 4359–4368. https://doi.org/10.1007/s11356-014-3675-0

    Article  CAS  Google Scholar 

  • Garbeva, P., & Weisskopf, L. (2020). Airborne medicine: Bacterial volatiles and their influence on plant health. New Phytologist, 226, 32–43. https://doi.org/10.1111/nph.16282

    Article  Google Scholar 

  • García-Aljaro, C., Martín-Díaz, J., Viñas-Balada, E., Calero-Cáceres, W., Lucena, F., & Blanch, A. R. (2017). Mobilisation of microbial indicators, microbial source tracking markers and pathogens after rainfall events. Water Research, 112, 248–253. https://doi.org/10.1016/j.watres.2017.02.003

    Article  CAS  Google Scholar 

  • Górny, R. L. (2020). Microbial aerosols: Sources, properties, health effects, exposure assessment—a review. KONA Powder and Particle Journal, 37, 64–84. https://doi.org/10.14356/kona.2020005

    Article  CAS  Google Scholar 

  • Gottwald, T. R., Trocine, T. M., & Timmer, L. W. (1997). A computer-controlled environmental chamber for the study of aerial fungal spore release. Phytopathology, 87, 1078–1084. https://doi.org/10.1094/PHYTO.1997.87.10.1078

    Article  CAS  Google Scholar 

  • Haddrell, A. E., & Thomas, R. J. (2017). Aerobiology: Experimental considerations, observations, and future tools. Applied and Environment Microbiology, 83, e00809-e817. https://doi.org/10.1128/AEM.00809-17

    Article  CAS  Google Scholar 

  • Haleem, K. A. A., & Mohan, K. S. (2012). Fungal pollution of indoor environments and its management. Saudi Journal of Biological Sciences, 19(4), 405–426. https://doi.org/10.1016/j.sjbs.2012.06.002

    Article  CAS  Google Scholar 

  • Hsieh, N. H., & Liao, C. M. (2014). In vitro measurement and dynamic modeling-based approaches for deposition risk assessment of inhaled aerosols in human respiratory system. Atmospheric Environment, 95, 268–276. https://doi.org/10.1016/j.atmosenv.2014.06.045

    Article  CAS  Google Scholar 

  • Jiang, S., Sun, B., Zhu, R., Che, C., Ma, D., Wang, R., & Dai, H. (2022). Airborne microbial community structure and potential pathogen identification across the PM size fractions and seasons in the urban atmosphere. Science of the Total Environment, 831, 154665. https://doi.org/10.1016/j.scitotenv.2022.154665

    Article  CAS  Google Scholar 

  • Kang, S. M., Heo, K. J., & Lee, B. U. (2015). Why does rain increase the concentrations of environmental bioaerosols during monsoon? Aerosol and Air Quality Research, 15(6), 2320–2324. https://doi.org/10.4209/aaqr.2014.12.0328

    Article  CAS  Google Scholar 

  • Li, J., Zuraimi, S., Schiavon, S., Wan, M. P., Xiong, J., & Tham, K. W. (2022). Diurnal trends of indoor and outdoor fluorescent biological aerosol particles in a tropical urban area. Science of the Total Environment, 848, 157811. https://doi.org/10.1016/j.scitotenv.2022.157811

    Article  CAS  Google Scholar 

  • Li, Y., Fu, H., Wang, W., Liu, J., Meng, Q., & Wang, W. (2015). Characteristics of bacterial and fungal aerosols during the autumn haze days in Xi’an, China. Atmospheric Environment, 122, 439–447. https://doi.org/10.1016/j.atmosenv.2015.09.070

    Article  CAS  Google Scholar 

  • Liang, Y. J., Fang, L. Q., Pan, H., Zhang, K. Z., Kan, H. D., Brook, J. R., & Sun, Q. H. (2014). PM2.5 in Beijing—Temporal pattern and its association with influenza. Environmental Health, 13(1), 102. https://doi.org/10.1186/1476-069X-13-102

    Article  CAS  Google Scholar 

  • Macher, J. M. (1989). Positive-hole correction of multiple-jet impactors for collecting viable microorganisms. The American Industrial Hygiene Association Journal, 50, 561–568. https://doi.org/10.1080/15298668991375164

    Article  CAS  Google Scholar 

  • Madhwal, S., Prabhu, V., Sundriyal, S., & Shridhar, V. (2020). Distribution, characterization and health risk assessment of size fractionated bioaerosols at an open landfill site in Dehradun, India. Atmospheric Pollution Research, 11, 156–169. https://doi.org/10.1016/j.apr.2019.10.002

    Article  Google Scholar 

  • Ministry of Environmental Protection of the PRC (2013) Exposure Factors Handbook of Chinese Population (Adults). Environment Publishing Group(in Chinese)

  • Ministry of Environmental Protection of the PRC (2016b) Exposure Factors Handbook of Chinese Population (6–17 years). Environment Publishing Group(in Chinese).

  • Ministry of Environmental Protection of the PRC (2016a) Exposure Factors Handbook of Chinese Population (0–5 years). Environment Publishing Group(in Chinese).

  • Peel, J. L., Klein, M., Flanders, W. D., Mulholland, J. A., Freed, G., & Tolbert, P. E. (2011). Ambient air pollution and apnea and bradycardia in high-risk infants on home monitors. Environmental Health Perspectives, 119, 1321–1327. https://doi.org/10.1289/ehp.1002739

    Article  CAS  Google Scholar 

  • Qi, J., Li, M., Zhen, Y., & Wu, L. (2018). Characterization of bioaerosol bacterial communities during hazy and foggy weather in qingdao. China. J. Ocean Univ. China, 17, 516–526. https://doi.org/10.1007/s11802-018-3307-2

    Article  Google Scholar 

  • Raisi, L., Aleksandropoulou, V., Lazaridis, M., & Katsivela, E. (2013). Size distribution of viable, cultivable, airborne microbes and their relationship to particulate matter concentrations and meteorological conditions in a Mediterranean site. Aerobiologia, 29, 233–248. https://doi.org/10.1007/s10453-012-9276-9

    Article  Google Scholar 

  • Reitsma, M. B., Claypool, A. L., Vargo, J., Shete, P. B., McCorvie, R., Wheeler, W. H., Rocha, O. A., Myers, J. F., Murray, E. L., Bregman, B., et al. (2021). Racial/ethnic disparities In COVID-19 exposure risk, testing, and cases at the subcounty level In California: Study examines racial/ethnic disparities in COVID-19 risk, testing, and case. Health Affairs, 40, 870–878. https://doi.org/10.1377/hlthaff.2021.00098

    Article  Google Scholar 

  • Rodriguez-Gomez, C., Ramirez-Romero, C., Cordoba, F., Raga, G. B., Salinas, E., Martinez, L., Rosas, I., Quintana, E. T., Maldonado, L. A., Rosas, D., et al. (2020). Characterization of culturable airborne microorganisms in the Yucatan Peninsula. Atmospheric Environment, 223, 117183. https://doi.org/10.1016/j.atmosenv.2019.117183

    Article  CAS  Google Scholar 

  • Sun, Y., Zhuang, G., Tang, A., Wang, Y., & An, Z. (2006). Chemical Characteristics of PM2.5 and PM10 in Haze-Fog Episodes in Beijing. Environmental Science and Technology, 40, 3148–3155. https://doi.org/10.1021/es051533g

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (USEPA) (1999) Human health and ecological risk assessment support to the development of technical standards for emissions from combustion units burning hazardous wastes. USEPA, Washington, DC: Background Document

  • Wang, Y., Fu, Y., Wang, C., & Wen, N. (2018). Dissimilar emission characteristics between bioaerosol and suspended particles from gaseous biofilters and bioaerosol health risk evaluation. Aerosol Air Qual Res, 18, 1874–1885. https://doi.org/10.4209/aaqr.2017.11.0485

    Article  CAS  Google Scholar 

  • Wu, D., Zhang, Y., Qin, W., Tian, Y., Li, A., Hou, L., Hou, Y., Han, B., Wang, T., Xiong, J., et al. (2021). Assessment of seasonal variations in concentration, particle-size distribution, and taxonomic composition of airborne fungi in a courtyard space. Atmospheric Pollution Research, 12, 113–121. https://doi.org/10.1016/j.apr.2020.10.014

    Article  Google Scholar 

  • Xie, Z., Li, Y., Lu, R., Li, W., Fan, C., Liu, P., Wang, J., & Wang, W. (2018). Characteristics of total airborne microbes at various air quality levels. Journal of Aerosol Science, 116, 57–65. https://doi.org/10.1016/j.jaerosci.2017.11.001

    Article  CAS  Google Scholar 

  • Yang, K., Li, L., Wang, Y., Xue, S., Han, Y., & Liu, J. (2019b). Emission level, particle size and exposure risks of airborne bacteria from the oxidation ditch for seven months observation. Atmospheric Pollution Research, 10, 1803–1811. https://doi.org/10.1016/j.apr.2019.07.012

    Article  CAS  Google Scholar 

  • Yang, T., Han, Y., Zhang, M., Xue, S., Li, L., Liu, J., & Qiu, Z. (2019a). Characteristics and exposure risks of potential pathogens and toxic metal(loid)s in aerosols from wastewater treatment plants. Ecotoxicology and Environmental Safety, 183, 109543. https://doi.org/10.1016/j.ecoenv.2019.109543

    Article  CAS  Google Scholar 

  • Yang, Y., Zhang, R., & Lou, Z. (2022). Bioaerosol emissions variations in large-scale landfill region and their health risk impacts. Frontiers of Environmental Science & Engineering, 16, 1–9. https://doi.org/10.1007/s11783-022-1593-9

    Article  CAS  Google Scholar 

  • Yousefian, F., Faridi, S., Azimi, F., Aghaei, M., Shamsipour, M., Yaghmaeian, K., & Hassanvand, M. S. (2020). Temporal variations of ambient air pollutants and meteorological influences on their concentrations in tehran during 2012–2017. Scientific Reports, 10(1), 292. https://doi.org/10.1038/s41598-019-56578-6

    Article  CAS  Google Scholar 

  • Zamfir, M., Gerstner, D. G., Walser, S. M., Bünger, J., Eikmann, T., Annette Kolk, S. H., Nowak, D., Raulf, M., Sagunski, H., Sedlmaier, N., Suchenwirth, R., Wiesmüller, G. A., Wollin, K., Tesseraux, I., & Herr, C. E. W. (2019). A systematic review of experimental animal studies on microbial bioaerosols: dose-response data for the derivation of exposure limits. International Journal of Hygiene and Environmental Health, 222(2), 249–259. https://doi.org/10.1016/j.ijheh.2018.11.004

    Article  CAS  Google Scholar 

  • Zhang, T., Wang, Y., Qi, J. H., Zhang, D. H., & Li, X. G. (2022b). The relationships between health risk and special weather conditions according to fungal community characteristics. Aerobiologia, 38, 263–275. https://doi.org/10.1007/s10453-022-09747-6

    Article  Google Scholar 

  • Zhang, X., Wu, J. F., Smith, L. M., Li, X., Yancey, O., Franzblau, A., Dvonch, J. T., Xi, C. W., & Neitzel, R. L. (2022a). Monitoring SARS-CoV-2 in air and on surfaces and estimating infection risk in buildings and buses on a university campus. Journal of Exposure Science & Environmental Epidemiology, 32, 751–758. https://doi.org/10.1038/s41370-022-00442-9

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Key R&D Program of Shandong Province (Major Scientific and Technological Innovation Project) (No. 2020CXGC010703-5).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and sampling collection were performed by Ting Zhang, Chen Han and Yao Wang. Meteorological data collection was performed by Shaohua Sun and Yongzhong Song. The first draft of the manuscript was written by Lingchong Yan. Dahai Zhang, Jianhua Qi and Xianguo Li revised the original manuscript. All authors commented on previous versions of the manuscript and approved the final manuscript.

Corresponding author

Correspondence to Dahai Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

The manuscript is approved by all authors for publication.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 23 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, L., Zhang, T., Sun, S. et al. Abundance and health risk of bioaerosols in the coastal areas of Qingdao, China. Aerobiologia (2024). https://doi.org/10.1007/s10453-024-09822-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10453-024-09822-0

Keywords

Navigation