Skip to main content

Advertisement

Log in

Atmospheric particulate matter deposition on birch catkins and pollen grains before pollination

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Birch is the most allergenic tree species in Northern and Central Europe. Airborne birch pollen concentrations are observed to be on the rise for several decades. Health hazard due to birch pollen grains (BPGs) can worsen due to particulate air pollution. The prevalence of the intimate mixture of BPGs with atmospheric particulate matter (APM) at the single pollen grain level is still unraveled. In this study, APM transfer mechanisms to birch catkins and BPGs prior to pollination were investigated at an urban-industrial and a peri-urban site in Northern France. The surface of catkins was heavily polluted with micrometer-sized particles. Conversely, BPGs were relatively unpolluted with on average 0.1 particle.BPG−1. Differences in the chemical composition of adhered particles were observed as a function of the sampling sites. In contrast, no significant difference was found in terms of surface concentrations of APM adhered to BPGs and catkins between the two sites. Comparison of the number of particles deposited per pollen grain according to whether they were harvested from catkins or collected while airborne suggests that particulate pollution of pollen occurs preferentially after pollen shedding, either by impaction or coagulation mechanisms with other suspended APM or by pollen settling on dust-contaminated surfaces followed by resuspension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alleman, L. Y., Lamaison, L., Perdrix, E., Robache, A., & Galloo, J.-C. (2010). PM10 Metal concentrations and source identification using positive matrix factorization and wind sectoring in a French industrial zone. Atmospheric Research, 96(4), 612–625. https://doi.org/10.1016/j.atmosres.2010.02.008

    Article  CAS  Google Scholar 

  • Aoyagi, H., & Ugwu, C. U. (2011). Fullerene fine particles adhere to pollen grains and affect their autofluorescence and germination. Nanotechnology, Science and Applications, 4, 67.

    Article  Google Scholar 

  • Azzazy, M. (2016). Environmental impacts of industrial pollution on pollen morphology of Eucalyptus globulus Labill. (Myrtaceae). Journal of Applied Biology & Biotechnology, 4(05), 057–062.

    Google Scholar 

  • Bellanger, A. P., Bosch-Cano, F., Millon, L., Ruffaldi, P., Franchi, M., & Bernard, N. (2012). Reactions of airway epithelial cells to birch pollen grains previously exposed to in situ atmospheric Pb concentrations: A Preliminary assay of allergenicity. Biological Trace Element Research, 1–5.

  • Besancenot, J.-P., Sindt, C., & Thibaudon, M. (2019). Pollen et changement climatique. Bouleau et graminées en France métropolitaine. Revue Française D’allergologie. https://doi.org/10.1016/j.reval.2019.09.006

    Article  Google Scholar 

  • Biedermann, T., Winther, L., Till, S. J., Panzner, P., Knulst, A., & Valovirta, E. (2019). Birch pollen allergy in Europe. Allergy, 74(7), 1237–1248. https://doi.org/10.1111/all.13758

    Article  CAS  Google Scholar 

  • Bowker, G. E., & Crenshaw, H. C. (2007a). Electrostatic forces in wind-pollination—part 1: Measurement of the electrostatic charge on pollen. Atmospheric Environment, 41(8), 1587–1595. https://doi.org/10.1016/j.atmosenv.2006.10.047

    Article  CAS  Google Scholar 

  • Bowker, G. E., & Crenshaw, H. C. (2007b). Electrostatic forces in wind-pollination—part 2: Simulations of pollen capture. Atmospheric Environment, 41(8), 1596–1603. https://doi.org/10.1016/j.atmosenv.2006.10.048

    Article  CAS  Google Scholar 

  • Caillaud, D., Martin, S., Segala, C., Besancenot, J.-P., Clot, B., & Thibaudon, M. (2014). Effects of airborne birch pollen levels on clinical symptoms of seasonal allergic rhinoconjunctivitis. International Archives of Allergy and Immunology, 163(1), 43–50. https://doi.org/10.1159/000355630

    Article  CAS  Google Scholar 

  • Carniel, F. C., Gorelli, D., Flahaut, E., Fortuna, L., Casino, C. D., Cai, G., et al. (2018). Graphene oxide impairs the pollen performance of Nicotiana Tabacum and Corylus Avellana suggesting potential negative effects on the sexual reproduction of seed plants. Environmental Science: Nano, 5(7), 1608–1617. https://doi.org/10.1039/C8EN00052B

    Article  Google Scholar 

  • Cazier, F., Dewaele, D., Delbende, A., Nouali, H., Garçon, G., Verdin, A., et al. (2011). Sampling analysis and characterization of particles in the atmosphere of rural, urban and industrial areas. Procedia Environmental Sciences, 4, 218–227.

    Article  CAS  Google Scholar 

  • Cerceau-Larrival, M. T., Nilsson, S., Cauneau-Pigot, A., Berggren, B., Derouet, L., Verhille, A.-M., & Carbonnier-Jarreau, M.-C. (1991). The influence of the environment (natural and experimental) on the composition of the exine of allergenic pollen with respect to the deposition of pollutant mineral particles. Grana, 30(2), 532–545.

    Article  Google Scholar 

  • Choël, M., Ivanovsky, A., Roose, A., Hamzé, M., Blanchenet, A.-M., Deboudt, K., & Visez, N. (2020). Evaluation of hirst-type sampler and PM10 impactor for investigating adhesion of atmospheric particles onto allergenic pollen grains. Aerobiologia, 36, 657–668. https://doi.org/10.1007/s10453-020-09662-8

    Article  Google Scholar 

  • Choël, M., Ivanovsky, A., Roose, A., Hamzé, M., Blanchenet, A.-M., & Visez, N. (2022). Quantitative assessment of coagulation of atmospheric particles onto airborne birch pollen grains. Journal of Aerosol Science, 161, 105944. https://doi.org/10.1016/j.jaerosci.2021.105944

    Article  CAS  Google Scholar 

  • Darbah, J. N. T., Kubiske, M. E., Nelson, N., Oksanen, E., Vapaavuori, E., & Karnosky, D. F. (2008). Effects of decadal exposure to interacting elevated CO2 and/or O3 on paper birch (Betula papyrifera) reproduction. Environmental Pollution, 155(3), 446–452. https://doi.org/10.1016/j.envpol.2008.01.033

    Article  CAS  Google Scholar 

  • Dutta Gupta, S., Saha, N., Agarwal, A., & Venkatesh, V. (2019). Silver nanoparticles (AgNPs) induced impairment of in vitro pollen performance of Peltophorum pterocarpum (DC.) K. Heyne. Ecotoxicology. https://doi.org/10.1007/s10646-019-02140-z

  • Erdtman, G. (1943). An introduction to pollen analysis. Chronica botanica Company.

  • Frei, T. (1998). The effects of climate change in Switzerland 1969–1996 on airborne pollen quantities from Hazel, Birch and Grass. Grana, 37(3), 172–179. https://doi.org/10.1080/00173139809362662

    Article  Google Scholar 

  • Frei, T., & Gassner, E. (2008). Climate change and its impact on birch pollen quantities and the start of the pollen season an example from Switzerland for the period 1969–2006. International Journal of Biometeorology, 52(7), 667–674. https://doi.org/10.1007/s00484-008-0159-2

    Article  Google Scholar 

  • Fry, F. A., & Black, A. (1973). Regional deposition and clearance of particles in the human nose. Journal of Aerosol Science, 4(2), 113–124. https://doi.org/10.1016/0021-8502(73)90063-3

    Article  Google Scholar 

  • Gottardini, E., Cristofolini, F., Paoletti, E., Lazzeri, P., & Pepponi, G. (2004). Pollen viability for air pollution bio-monitoring. Journal of Atmospheric Chemistry, 49(1), 149–159.

    Article  CAS  Google Scholar 

  • Grantz, D. A., Garner, J. H. B., & Johnson, D. W. (2003). Ecological effects of particulate matter. Environment International, 29(2), 213–239. https://doi.org/10.1016/S0160-4120(02)00181-2

    Article  CAS  Google Scholar 

  • Grote, M., Valenta, R., & Reichelt, R. (2003). Abortive pollen germination: A mechanism of allergen release in birch, alder, and hazel revealed by immunogold electron microscopy. Journal of Allergy and Clinical Immunology, 111(5), 1017–1023.

    Article  Google Scholar 

  • Guedes, A., Ribeiro, N., Ribeiro, H., Oliveira, M., Noronha, F., & Abreu, I. (2009). Comparison between urban and rural pollen of Chenopodium alba and characterization of adhered pollutant aerosol particles. Journal of Aerosol Science, 40(1), 81–86.

    Article  CAS  Google Scholar 

  • Günthardt-Goerg, M. S., Matyssek, R., Scheidegger, C., & Keller, T. (1993). Differentiation and structural decline in the leaves and bark of birch (Betula pendula) under low ozone concentrations. Trees, 7(2), 104–114. https://doi.org/10.1007/BF00225477

    Article  Google Scholar 

  • Harrison, R. G., & Carslaw, K. S. (2003). Ion-aerosol-cloud processes in the lower atmosphere. Reviews of Geophysics, 41(3). https://doi.org/10.1029/2002RG000114

  • Helander, M. L., Savolainen, J., & Ahlholm, J. (1997). Effects of air pollution and other environmental factors on birch pollen allergens. Allergy, 52(12), 1207–1214.

    Article  CAS  Google Scholar 

  • Hoebeke, L., Bruffaerts, N., Verstraeten, C., Delcloo, A., Smedt, T. D., Packeu, A., et al. (2017). Thirty-four years of pollen monitoring: An evaluation of the temporal variation of pollen seasons in Belgium. Aerobiologia. https://doi.org/10.1007/s10453-017-9503-5

    Article  Google Scholar 

  • Jaconis, S. Y., Culley, T. M., & Meier, A. M. (2017). Does particulate matter along roadsides interfere with plant reproduction? A Comparison of effects of different road types on Cichorium intybus pollen deposition and germination. Environmental Pollution, 222, 261–266.

    Article  CAS  Google Scholar 

  • Jochner, S. C., Beck, I., Behrendt, H., Traidl-Hoffmann, C., & Menzel, A. (2011). Effects of extreme spring temperatures on urban phenology and pollen production: A case study in Munich and Ingolstadt. Climate Research, 49(2), 101–112. https://doi.org/10.3354/cr01022

    Article  Google Scholar 

  • Jochner, S., Lüpke, M., Laube, J., Weichenmeier, I., Pusch, G., Traidl-Hoffmann, C., et al. (2015). Seasonal variation of birch and grass pollen loads and allergen release at two sites in the German Alps. Atmospheric Environment, 122, 83–93. https://doi.org/10.1016/j.atmosenv.2015.08.031

    Article  CAS  Google Scholar 

  • Karlsson, P. E., Uddling, J., Skärby, L., Wallin, G., & Selldén, G. (2003). Impact of ozone on the growth of birch (Betula pendula) saplings. Environmental Pollution, 124(3), 485–495. https://doi.org/10.1016/S0269-7491(03)00010-1

    Article  CAS  Google Scholar 

  • Kozlov, M. V., & Zvereva, E. L. (2004). Reproduction of mountain birch along a strong pollution gradient near Monchegorsk, Northwestern Russia. Environmental Pollution, 132, 443–451.

    Article  CAS  Google Scholar 

  • Lavaud, F., Fore, M., Fontaine, J. F., Pérotin, J. M., & de Blay, F. (2013). Allergie au pollen de bouleau. Revue Des Maladies Respiratoires, 31(2), 150–161. https://doi.org/10.1016/j.rmr.2013.08.006

    Article  Google Scholar 

  • Litschke, T., & Kuttler, W. (2008). On the reduction of urban particle concentration by vegetation—a review. Meteorologische Zeitschrift, 17(3), 229–240. https://doi.org/10.1127/0941-2948/2008/0284

    Article  Google Scholar 

  • Mack, S. M., Madl, A. K., & Pinkerton, K. E. (2019). Respiratory health effects of exposure to ambient particulate matter and bioaerosols. In Comprehensive physiology (pp. 1–20). American Cancer Society. https://doi.org/10.1002/cphy.c180040. Accessed 26 December 2019

  • Matyssek, R., Giinthardt-Goerg, M. S., Schmutz, P., Saurer, M., Landolt, W., & Bücher, J. B. (1997). Response mechanisms of birch and poplar to air pollutants. Journal of Sustainable Forestry, 6(1–2), 3–22. https://doi.org/10.1300/J091v06n01_02

    Article  Google Scholar 

  • Matyssek, R., Günthardt-Goerg, M. S., Keller, T., & Scheidegger, C. (1991). Impairment of gas exchange and structure in birch leaves (Betula pendula) caused by low ozone concentrations. Trees, 5(1), 5–13. https://doi.org/10.1007/BF00225329

    Article  Google Scholar 

  • Monaci, F., & Bargagli, R. (1997). Barium and other trace metals as indicators of vehicle emissions. Water, Air, and Soil Pollution, 100(1), 89–98. https://doi.org/10.1023/A:1018318427017

    Article  CAS  Google Scholar 

  • Mortensen, L. M., & Skre, O. (1990). Effects of low ozone concentrations on growth of Betula pubescens Ehrh., Betula verrucosa Ehrh. and Alnus incana (L.) Moench. New Phytologist, 115(1), 165–170. https://doi.org/10.1111/j.1469-8137.1990.tb00934.x

  • Namjoyan, F., Farasat, M., Kiabi, S., Ramezani, Z., & Mousavi, H. (2020). Structural and ultra-structural analysis of Conocarpus erectus pollen grains before and after dust storms. Grana. https://doi.org/10.1080/00173134.2019.1689290

    Article  Google Scholar 

  • Niklas, K. J. (1985). The aerodynamics of wind pollination. The Botanical Review, 51(3), 328–386.

    Article  Google Scholar 

  • Nilsson, S., & Berggren, B. (1991). Various methods to determine air pollutants on pollen grains. Grana, 30(2), 553–556.

    Article  Google Scholar 

  • Oksanen, E., Riikonen, J., Kaakinen, S., Holopainen, T., & Vapaavuori, E. (2005). Structural characteristics and chemical composition of birch (Betula pendula) leaves are modified by increasing CO2 and ozone. Global Change Biology, 11(5), 732–748. https://doi.org/10.1111/j.1365-2486.2005.00938.x

    Article  Google Scholar 

  • Phosri, A., Ueda, K., Tasmin, S., Kishikawa, R., Hayashi, M., Hara, K., et al. (2017). Interactive effects of specific fine particulate matter compositions and airborne pollen on frequency of clinic visits for pollinosis in Fukuoka, Japan. Environmental Research, 156, 411–419.

    Article  CAS  Google Scholar 

  • Polosa, R. (2001). The interaction between particulate air pollution and allergens in enhancing allergic and airway responses. Current Allergy and Asthma Reports, 1(2), 102–107.

    Article  CAS  Google Scholar 

  • Proctor, M., Yeo, P., & Lack, A. (1996). The natural history of pollination (Updated, Subsequent.). Timber Press.

  • Rai, A., Kulshreshtha, K., Srivastava, P. K., & Mohanty, C. S. (2010). Leaf surface structure alterations due to particulate pollution in some common plants. The Environmentalist, 30(1), 18–23. https://doi.org/10.1007/s10669-009-9238-0

    Article  Google Scholar 

  • Ranta, H., Hokkanen, T., Linkosalo, T., Laukkanen, L., Bondestam, K., & Oksanen, A. (2008). Male flowering of birch: spatial synchronization, year-to-year variation and relation of catkin numbers and airborne pollen counts. Forest Ecology and Management, 255(3), 643–650. https://doi.org/10.1016/j.foreco.2007.09.040

    Article  Google Scholar 

  • Roos, R. A., & Dutertre-Laduree, D. (1990). Atmospheric charged aerosol and electric field observations in Western France. Journal of Aerosol Science, 21, S283–S286. https://doi.org/10.1016/0021-8502(90)90239-T

    Article  Google Scholar 

  • Ruggiero, F., & Bedini, G. (2018). Systematic and morphologic survey of orbicules in allergenic angiosperms. Aerobiologia, 34, 405–422.

    Article  Google Scholar 

  • Schober, W., Belloni, B., Lubitz, S., Eberlein-König, B., Bohn, P., Saritas, Y., et al. (2006). Organic extracts of urban aerosol (≤PM2.5) enhance rBet v 1-induced upregulation of CD63 in basophils from birch pollen–allergic individuals. Toxicological Sciences, 90(2), 377–384. https://doi.org/10.1093/toxsci/kfj092

  • Sedghy, F., Sankian, M., Moghadam, M., Ghasemi, Z., Mahmoudi, M., & Varasteh, A.-R. (2016). Impact of traffic-related air pollution on the expression of Platanus orientalis pollen allergens. International Journal of Biometeorology, 1–9.

  • Sénéchal, H., Visez, N., Charpin, D., Shahali, Y., Peltre, G., Bioley, J.-P., Lhuissier, F., Couderc, R., Yamada, O., Malrat-Domenge, A., & Pham-Thi, N. (2015). A review of the effects of major atmospheric pollutants on pollen grains, pollen content and allergenicity. The Scientific World Journal, 2015, ID 940243. https://doi.org/10.1155/2015/940243

  • Speranza, A., Crinelli, R., Scoccianti, V., Taddei, A. R., Iacobucci, M., Bhattacharya, P., & Ke, P. C. (2013). In-vitro toxicity of silver nanoparticles to Kiwifruit pollen exhibits peculiar traits beyond the cause of silver ion release. Environmental Pollution, 179, 258–267. https://doi.org/10.1016/j.envpol.2013.04.021

    Article  CAS  Google Scholar 

  • Speranza, A., Ferri, P., Battistelli, M., Falcieri, E., Crinelli, R., & Scoccianti, V. (2007). Both trivalent and hexavalent chromium strongly alter in vitro germination and ultrastructure of Kiwifruit pollen. Chemosphere, 66(7), 1165–1174. https://doi.org/10.1016/j.chemosphere.2006.08.019

    Article  CAS  Google Scholar 

  • Speranza, A., Leopold, K., Maier, M., Taddei, A. R., & Scoccianti, V. (2010). Pd-Nanoparticles cause increased toxicity to Kiwifruit pollen compared to soluble Pd (ii). Environmental Pollution, 158(3), 873–882.

    Article  CAS  Google Scholar 

  • Thomas, P. A. (2000). Trees: Their natural history. Cambridge University Press. https://www.cambridge.org/core/books/trees/C8F75A3A01AA84A58B6E21D902132351. Accessed 29 May 2020

  • Vaknin, Y., Gan-Mor, S., Bechar, A., Ronen, B., & Eisikowitch, D. (2000). The role of electrostatic forces in pollination. Plant Systematics and Evolution, 222(1–4), 133–142.

    Article  Google Scholar 

  • Visez, N., Ivanovsky, A., Roose, A., Gosselin, S., Sénéchal, H., Poncet, P., & Choël, M. (2020). Atmospheric particulate matter adhesion onto pollen: A review. Aerobiologia, 36(1), 49–62. https://doi.org/10.1007/s10453-019-09616-9

    Article  Google Scholar 

  • Wang, X., Gao, Y., Feng, Y., Li, X., Wei, Q., & Sheng, X. (2014). Cadmium stress disrupts the endomembrane organelles and endocytosis during Picea wilsonii pollen germination and tube growth. PloS One, 9(4), e94721. https://doi.org/10.1371/journal.pone.0094721

  • Wolters, J., & Martens, M. (1987). Effects of air pollutants on pollen. The Botanical Review, 53(3), 372–414. http://dx.doi.org/10.1007/BF02858322

    Article  Google Scholar 

  • Žiarovská, J., Labajová, M., Ražná, K., Bežo, M., Štefúnová, V., Shevtsova, T., et al. (2013). Changes in expression of BetV1 allergen of silver birch pollen in urbanized area of Ukraine. Journal of Environmental Science and Health, Part A, 48(12), 1479–1484. https://doi.org/10.1080/10934529.2013.796788

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MC and NV thank Université de Lille, Centre National de la Recherche Scientifique (CNRS) and Institut de Recherches Pluridisciplinaires en Sciences de l’Environnement (IREPSE Fed 4129) for financial support. The CaPPA project (Chemical and Physical Properties of the Atmosphere) is funded by the French National Research Agency (ANR) through the PIA (Programme d'Investissement d'Avenir) under contract ANR-11-LABX-005-01. This work is a contribution to the CPER research projects CLIMIBIO and IRENE. Marc Fourmentin from LPCA is thanked for providing meteorological data. Air quality data were provided by Atmo Hauts-de-France. The authors thank the French Ministère de l'Enseignement Supérieur et de la Recherche, the Hauts de France Region and the European Funds for Regional Economic Development for their financial support to this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Visez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choël, M., Visez, N., Secordel, X. et al. Atmospheric particulate matter deposition on birch catkins and pollen grains before pollination. Aerobiologia 38, 151–162 (2022). https://doi.org/10.1007/s10453-022-09739-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-022-09739-6

Keywords

Navigation