Aerobiologia

pp 1–17

Changes in the Mediterranean pine forest: pollination patterns and annual trends of airborne pollen

  • Concepción De Linares
  • Rosario Delgado
  • Maria Jesús Aira
  • Purificación Alcázar
  • Silvia Alonso-Pérez
  • Marzia Boi
  • Paloma Cariñanos
  • Emilio Cuevas
  • Consuelo Díaz de la Guardia
  • Belén Elvira-Rendueles
  • Delia Fernández-González
  • Carmen Galán
  • Adela Montserrat Gutiérrez-Bustillo
  • Rosa Pérez-Badia
  • Francisco Javier Rodríguez-Rajo
  • Luis Ruíz-Valenzuela
  • Rafael Tormo-Molina
  • Maria del Mar Trigo
  • Rosa M. Valencia-Barrera
  • Ana Valle
  • Jordina Belmonte
Original Paper

Abstract

In some areas, forests are being affected in diverse aspects such as structure, composition and biodiversity showing an increase or a decrease in the growth rates. Pinus is one of the most dominant genera in the forests of the Northern Hemisphere. This study analyzes the pine pollination patterns in 30 locations of Spain with an average of 21-year dataset. The aim is to evaluate possible changes in flowering intensity as well as in annual pollen production trends, according to the airborne pollen patterns. Annual Pollen Indices show three threshold values: (1) over 4000 grains per year in Catalonia, the Central System Mountains and Ourense (Galicia), (2) between 4000 and 1000 grains in central-south Spain and in the Balearic Islands, and (3) under 1000 in eastern Spain, Cartagena and the Canary Islands. Airborne pollen patterns were also influenced by Pinus species: The species located in the littoral and low land areas pollinated in the first pollination phase, from February to April, and the mountain pine species did in the second one, from April to June. The statistical analyses reveal increasing significant trends in 12 sites and significant decreasing trends in two. The Pinus flowering intensity is showing an earlier start and a delay in the end of the pollination period, thus a longer period of pollen in the air. This study suggests that the aerobiological monitoring is an interesting bio-indicator of changes happening in Pinus landscapes, and therefore explains the vulnerability of this genus in Spain.

Keywords

Pinus pollen Environment and climate change Flowering intensity Annual trends Pollination patterns 

References

  1. Alba-Sánchez, F., Sabariego-Ruiz, S., Díaz de la Guardia, C., Nieto-Lugilde, D., & De Linares, C. (2010). Aerobiological behaviour of six anemophilous taxa in semi-arid environments of southern Europe (Almería, SE pain). Journal of Arid Environment, 74, 1381–1391.CrossRefGoogle Scholar
  2. Allué, J. L. (1990). Atlas fitoclimático de España [Phytoclimatic Atlas of Spain]. Madrid: INIA.Google Scholar
  3. Ameztegui, A., & Coll, L. (2011). Tree dynamics and co-existence in the montane-sub-alpine ecotone: The role of different light-induced strategies. Journal Vegetation Science, 22, 1049–1061.CrossRefGoogle Scholar
  4. Attorre, F., Alfo, M., De Sanctis, M., Francesconi, F., Valenti, R., Vitale, M., et al. (2011). Evaluating the effects of climate change on tree species abundance and distribution in the Italian peninsula. Applied Vegetation Science, 14(2), 242–255.CrossRefGoogle Scholar
  5. Belmonte, J., Alarcón, M., Avila, A., Scialabba, E., & Pino, D. (2008). Long-range transport of beech (Fagus sylvatica L.) pollen to Catalonia (north-eastern Spain). International Journal of Biometeorology, 52(7), 675–687.CrossRefGoogle Scholar
  6. Benito Garzón, M., Sánchez de Dios, R., & Sainz Ollero, H. (2008). Effects of climate change on the distribution of Iberian tree species. Applied Vegetation Science, 11(2), 169–178.CrossRefGoogle Scholar
  7. Briceño-Elizondo, E., Garcia-Gonzalo, J., Peltola, H., Matala, J., & Kellomaki, S. (2006). Sensitivity of growth of Scots pine, Norway spruce and silver birch to climate change and forest management in boreal conditions. Forest Ecology Management, 232, 152–167.CrossRefGoogle Scholar
  8. Cariñanos, P., De la Guardia, C., Algarra, J. A., De Linares, C., & Irurita, J. M. (2013). The pollen counts as bioindicator of meteorological trends and tool for assessing the status of endangered species: The case of Artemisia in Sierra Nevada (Spain). Climatic Change, 119, 1–15.CrossRefGoogle Scholar
  9. Cariñanos, P., Galán, C., Alcázar, P., & Domínguez, E. (2004). Airborne pollen records response to climatic conditions in arid areas of the Iberian Peninsula. Environmental and Experimental Botany, 52, 11–22.CrossRefGoogle Scholar
  10. Cariñanos, P., Galán, C., Alcázar, P., & Domínguez, E. (2010). Airborne pollen records and status of the anemophilous flora in arid areas of the Iberian Peninsula. Journal of Arid Environments, 74, 1102–1105.CrossRefGoogle Scholar
  11. Castroviejo, S., Aedo, C., Cirujano, S., Laínz, M., Montserrat, P., Morales, R., et al. (Eds.). (1993). Flora ibérica 1. Madrid: Real Jardín Botánico, CSIC.Google Scholar
  12. Clot, B. (2003). Trends in airborne pollen: An overview of 21 years of data in Neuchâtel (Switzerland). Aerobiologia, 19, 227–234.CrossRefGoogle Scholar
  13. Dale, V. H., Joyce, L. A., McNulty, S., & Neilson, R. P. (2000). The interplay between climate change, forests, and disturbances. Science of the Total Environment, 262, 201–204.CrossRefGoogle Scholar
  14. Dale, V. H., Joyce, L. A., Mcnulty, S., Neilson, R. P., Ayres, M. P., Flannigan, M. D., et al. (2001). Climate change and forest disturbances. BioScience, 51(9), 723–734.CrossRefGoogle Scholar
  15. DGCN, IFN3. (2007). Tercer Inventario Forestal Nacional, IFN3 (19972007) [Third National Forest Inventory, IFN3 (19972007)]. Madrid: Ministerio de Medio Ambiente. http://www.magrama.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/informacion-disponible/ifn3.aspx. Accessed November 9, 2016.
  16. Docampo, S., Recio, M., Trigo, M. M., Melgar, M., & Cabezudo, B. (2007). Risk of pollen allergy in Nerja (southern Spain): A pollen calendar. Aerobiologia, 23, 189–199.CrossRefGoogle Scholar
  17. FAO. (2011). State of the world’s forests. Rome: Food and Agriculture Organization of the United Nations.Google Scholar
  18. FAO. (2012). Forest management and climate change: A literature review. Rome: Food and Agriculture Organization of the United Nations.Google Scholar
  19. Fernández-González, M., Rodríguez-Rajo, F. J., Jato, V., Escuredo, O., & Aira, J. M. (2011). Estimation of yield “Loureira” variety with an aerobiological and phenological model. Grana, 50, 63–72.CrossRefGoogle Scholar
  20. Fernández-Llamazares, A., Belmonte, J., Delgado, R., & De Linares, C. (2014). A statistical approach to bioclimatic trend detection in the airborne pollen records of Catalonia (NE Spain). International Journal of Biometeorology, 58, 371–382. doi:10.1007/s00484-013-0632-4.CrossRefGoogle Scholar
  21. Frei, T., & Gassner, E. (2008). Climate change and its impact on birch pollen quantities and the start of the pollen season an example from Switzerland for the period 1969–2006. International Journal of Biometeorology, 52, 667–674.CrossRefGoogle Scholar
  22. Frenguelli, G., Tedeschini, E., Veronesi, F., & Bricchi, E. (2002). Airborne pine (Pinus spp.) pollen in the atmosphere of Perugia (Central Italy): Behaviour of pollination in the two last decades. Aerobiologia, 18, 223–228.CrossRefGoogle Scholar
  23. Galán, C., Alcázar, P., Oteros, J., García-Mozo, H., Aira, M. J., Belmonte, J., et al. (2016). Airborne pollen trends in the Iberian Peninsula. Science of the Total Environment, 550, 53–59.CrossRefGoogle Scholar
  24. Galán, C., Cariñanos, P., Alcázar, P., & Domínguez, E. (2007). Manual de Calidad y Gestión de la Red Española de Aerobiología [Quality manual and management Spanish aerobiology network]. Spain: Servicio de Publicaciones de la Universidad de Córdoba.Google Scholar
  25. Galán, C., Smith, M., Thibaudon, M., Frenguelli, G., Oteros, J., Gehrig, R., et al. (2014). Pollen monitoring: Minimum requirements and reproducibility of analysis. Aerobiologia, 30(4), 385–395.CrossRefGoogle Scholar
  26. García-Gonzalo, J., Peltola, H., Briceño-Elizondo, E., & Kellomäki, S. (2007). Changed thinning regimes may increase carbon stock under climate change: A case study from a Finnish boreal forest. Climatic Change, 81, 431–454.CrossRefGoogle Scholar
  27. García-Mozo, H., Mestre, A., & Galán, C. (2010). Phenological trends in southern Spain: A response to climate change. Agricultural Forest Meteorology, 150, 575–580.CrossRefGoogle Scholar
  28. Gobierno de Canarias. (2007) Programa de desarrollo rural de Canarias. FEADER (2007) [Rural Development Programme de Canarias. FEADER 2007]. Canarias: Gobierno de Canarias. http://www.pdrcanarias.org. Accessed November 9, 2016.
  29. Green, B. J., Panula, E. Y., Dettmann, M., Rutherford, S., & Simpson, R. (2003). Airborne Pinus pollen in the atmosphere of Brisbane, Australia and relationships with meteorological parameters. Aerobiologia, 19, 47–55.CrossRefGoogle Scholar
  30. Hirst, J. M. (1952). An automatic volumetric spore-trap. Annals of Applied Biology, 38, 257–265.CrossRefGoogle Scholar
  31. Jato, M. V., Rodríguez, F. J., & Seijo, M. C. (2000). Pinus pollen in the atmosphere of Vigo and its relationship to meteorological factors. International Journal of Biometeorology, 43, 147–153.CrossRefGoogle Scholar
  32. Lenoir, J., Gégout, J. C., Guisan, A., Vittoz, P., Wohlgemuth, T., Zimmermann, N. E., et al. (2010). Going against the flow: Potential mechanisms for unexpected downslope range shifts in a warming climate. Ecography, 33(2), 295–303.Google Scholar
  33. Lewis, H., Ziska, L. H., Epstein, P. R., & Rogers, C. A. (2008). Climate change, aerobiology, and public health in the Northeast United States. Mitigation and Adaptation Strategies for Global Change, 13, 607–613. doi:10.1007/s11027-007-9134-1.CrossRefGoogle Scholar
  34. Linares, J. C., & Tíscar, P. A. (2010). Climate change impacts and vulnerability of the southern populations of Pinus nigra subsp. salzmannii. Tree Physiology, 30(7), 795–806.CrossRefGoogle Scholar
  35. Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., et al. (2010). Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology Management, 259, 698–709.CrossRefGoogle Scholar
  36. Martínez-Vilalta, J., López, B. C., Adell, N., Badiella, L., & Ninyerola, M. (2008). Twentieth century increase of Scots pine radial growth in NE Spain shows strong climate interactions. Global Change Biology, 14, 2868–2881.CrossRefGoogle Scholar
  37. Navascués, M., Vendramin, G. G., & Emerson, B. C. (2007). The effect of altitude on the pattern of gene flow in the endemic canary island pine, Pinus canariensis. Silvae Genetica, 57, 357–363.Google Scholar
  38. Pearson, K. (1896). Mathematical contributions to the theory of evolution.--on a form of spurious correlation which may arise when indices are used in the measurement of organs. Proceedings of the Royal Society of London, 60(359–367), 489–498.CrossRefGoogle Scholar
  39. Pérez Badia, R., Rapp, A., Morales, C., Sardinero, S., Galán, C., & García-Mozo, H. (2010). Pollen spectrum and risk of pollen allergy in central Spain. Annals of Agricultural and Environmental Medicine, 17, 139–151.Google Scholar
  40. R Development Core Team. (2007). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  41. Rodriguez-Rajo, F. J., Jato, V., & Aira, M. J. (2003). Pollen content in the atmosphere of Lugo (NW Spain) with reference to meteorological factors (1999–2001). Aerobiologia, 19, 213–225.CrossRefGoogle Scholar
  42. Rosenzweig, C., Karoly, D., Vicarelli, M., Neofotis, P., Wu, Q., Casassa, G., et al. (2008). Attributing physical and biological impacts to anthropogenic climate change. Nature, 453, 353–358.CrossRefGoogle Scholar
  43. Ruiz Garcia, L., Diaz de la Guardia, C., & Mota, J. F. (1998). Analysis of airborne pollen in the town of Almería (South-East Spain), 1995–1996. Aeroblologia, 14, 281–284.CrossRefGoogle Scholar
  44. Sabaté, S., Gracía, C. A., & Sánchez, A. (2002). Likely effects of climate change on growth of Quercus ilex, Pinus halepensis, Pinus pinaster, Pinus sylvestris and Fagus sylvatica forests in the Mediterranean region. Forest Ecology Management, 162, 23–37.CrossRefGoogle Scholar
  45. Sánchez-Salguero, R., Navarro-Cerrillo, R. M., Swetnam, T. W., & Zavala, M. A. (2012). Is drought the main decline factor at the rear edge of Europe? The case of southern Iberian pine plantations. Forest Ecology Management, 271, 158–169.CrossRefGoogle Scholar
  46. Sen, P. K. (1968). Asymptotic normality of sample, quantiles for m-dependent processes. Annals of Mathematical Statistics, 39, 1724–1730.Google Scholar
  47. Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3/4), 591–611.CrossRefGoogle Scholar
  48. Spearman, C. (1904). “General Intelligence” objectively determined and measured. American Journal of Psychology, 15(2), 202–286.CrossRefGoogle Scholar
  49. Theil, H. (1950). A rank-invariant method of linear and polynomial regression analysis. I, II, III. Proceedings of the Knoniklijke Nederlandse Academie van Wetenschappen, 53, 386–392.Google Scholar
  50. Thuiller, W., Vayreda, J., Pino, J., Sabate, S., Lavorel, S., & Gracía, C. (2003). Large-scale environmental correlates of forest tree distributions in Catalonia (NE Spain). Global Ecology Biogeography, 12, 313–325.CrossRefGoogle Scholar
  51. Tormo-Molina, R., Gonzalo-Garijo, M. A., Silva-Palacios, I., & Muñoz-Rodríguez, A. F. (2010). General trends in airborne pollen production and pollination periods at a Mediterranean site (Badajoz, Southwest Spain). Journal of Investigational Allergology and Clinical Immunology, 20(7), 567–574.Google Scholar
  52. Tormo-Molina, R., Silva-Palacios, I., Gonzalo-Garijo, A., Moreno-Corchero, A., Pérez-Calderón, R., & Fernández-Rodríguez, S. (2011). Phenological records as a complement to aerobiological data. International Journal of Biometeorology, 55, 51–65.CrossRefGoogle Scholar
  53. Womack, A. M., Bohannan, B. J. M., & Green, J. L. (2010). Biodiversity and biogeography of the atmosphere. Philosophical Transactions of the Royal Society of London, 365, 3645–3653.CrossRefGoogle Scholar
  54. Zar, J. H. (1972). Significance testing of the spearman rank correlation coefficient. Journal of the American Statistical Association, 67, 339.CrossRefGoogle Scholar
  55. Ziello, C., Sparks, T. H., Estrella, N., Belmonte, J., Bergmann, K. H., Bucher, E., et al. (2012). Changes to airborne pollen counts across Europe. PLoS ONE, 7, 1–8.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Concepción De Linares
    • 1
    • 2
    • 19
  • Rosario Delgado
    • 3
  • Maria Jesús Aira
    • 4
  • Purificación Alcázar
    • 5
  • Silvia Alonso-Pérez
    • 6
  • Marzia Boi
    • 7
  • Paloma Cariñanos
    • 8
  • Emilio Cuevas
    • 9
  • Consuelo Díaz de la Guardia
    • 8
  • Belén Elvira-Rendueles
    • 10
  • Delia Fernández-González
    • 11
    • 12
  • Carmen Galán
    • 5
  • Adela Montserrat Gutiérrez-Bustillo
    • 13
  • Rosa Pérez-Badia
    • 14
  • Francisco Javier Rodríguez-Rajo
    • 15
  • Luis Ruíz-Valenzuela
    • 16
  • Rafael Tormo-Molina
    • 17
  • Maria del Mar Trigo
    • 18
  • Rosa M. Valencia-Barrera
    • 11
  • Ana Valle
    • 8
  • Jordina Belmonte
    • 1
    • 2
  1. 1.Unitat de BotànicaUniversitat Autònoma de BarcelonaBellaterraSpain
  2. 2.Institut de Ciència i Tecnologia Ambientals (ICTA)Universitat Autònoma de BarcelonaBellaterraSpain
  3. 3.Departament de MatemàtiquesUniversitat Autònoma de BarcelonaBellaterraSpain
  4. 4.Department of Botany, Faculty of PharmacyUniversity of SantiagoSantiago de CompostelaSpain
  5. 5.Department of Botany, Ecology and Plant PhysiologyCampus de Rabanales, University of CordobaCórdobaSpain
  6. 6.Universidad Europea de CanariasLaureate International UniversitiesLa OrotavaSpain
  7. 7.Department of Biology, Area of BotanyUniversity of the Balearic IslandsPalma de MallorcaSpain
  8. 8.Department of BotanyUniversity of GranadaGranadaSpain
  9. 9.Centro de Investigación Atmosférica de IzañaAgencia Estatal de MeteorologíaSanta Cruz de TenerifeSpain
  10. 10.Department of Chemical and Environmental EngineeringPolytechnic University of CartagenaCartagenaSpain
  11. 11.Department of Biodiversity and Environmental Management (Botany)University of LeónLeónSpain
  12. 12.Institute of Atmospheric Sciences and Climate (CNR)BolognaItaly
  13. 13.Department of Plant Biology IIUniversidad Complutense de MadridMadridSpain
  14. 14.Institute of Environmental SciencesUniversity of Castilla-La ManchaToledoSpain
  15. 15.Department of Plant Biology and Soil SciencesUniversity of VigoVigoSpain
  16. 16.Department of Animal Biology, Plant Biology and EcologyUniversity of JaénJaénSpain
  17. 17.Department of Plant Biology, Ecology and Earth Sciences, Faculty of ScienceUniversity of ExtremaduraBadajozSpain
  18. 18.Department of Plant BiologyUniversity of MálagaMálagaSpain
  19. 19.Unitat de BotànicaUniversitat Autònoma de BarcelonaBellaterraSpain

Personalised recommendations