Skip to main content
Log in

Seasonal distribution of airborne pollen in Manila, Philippines, and the effect of meteorological factors to its daily concentrations

  • Brief Communication
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Pollen-related allergic diseases are a growing health problem. Thus, information on prevalence of airborne pollen may serve as guide for clinicians to accurately manage allergic diseases. In this study, an aeropalynological survey was conducted from November 2013 to October 2014 in Manila, Philippines, to determine the seasonal distribution of the most prevalent airborne pollen and correlate the influence of meteorological factors on their daily concentrations. A volumetric pollen trap was placed on a rooftop, 21 m above ground level. A total of 5677 pollen grains from 18 pollen types were identified, of which Urticaceae, Cannabaceae, Poaceae and Moraceae were the most prevalent. Other pollen types observed that represented 1 % of the total pollen concentration, in descending order, were Terminalia catappa, Myrtaceae, Muntingia calabura, Verbenaceae, Amaranthaceae, Cyperaceae, Caricaceae and Mimosa sp. Of the total airborne pollen, 87 % were obtained during the dry season (November–May). Pollen concentrations peaked (55 %) during the summer months (March–May), indicating a positive correlation (p < 0.01) between pollen concentration and temperature (maximum and mean). Alternatively, only 13 % of the pollen concentrations were obtained during the wet season (June–October). It was observed that pollen concentrations were negatively correlated (p < 0.01) with rainfall and humidity. As the pollen collection was done for one sampling year, only an approximation of the daily concentration of the pollen types was identified and correlated with meteorological factors. Further data collection is required to generate an accurate pollen calendar for use in allergy studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Ahlawat, M., Dahiya, P., & Chaudhary, D. (2013). Allergenic pollen in the atmosphere of Rohtak city, Haryana (India): A pioneer study. Aerobiologia, 30(3), 229–238.

    Article  Google Scholar 

  • Banik, S., & Chanda, S. (1992). Airborne pollen survey of Central Calcutta, India, in relation to allergy. Grana, 31, 72–75. http://www.tandfonline.com/doi/full/10.1080/00173139209427829. Accessed 17 May 2013

  • Bartra, J., Mullol, J., del Cuvillo, A., Dávila, I., Ferrer, M., Jáuregui, I., et al. (2007). Air pollution and allergens. Journal of Investigational Allergology and Clinical Immunology, 17(Suppl 2), 3–8.

    Google Scholar 

  • Beggs, P. J. (2010). Adaptation to impacts of climate change on aeroallergens and allergic respiratory diseases. International Journal of Environmental Research and Public Health, 7(8), 3006–3021. doi:10.3390/ijerph7083006.

    Article  Google Scholar 

  • Boral, D., Chatterjee, S., & Bhattacharya, K. (2004). The occurrence and allergising potential of airborne pollen in West Bengal, India. Annals of Agriculture and Environmental Medicine, 11(1), 45–52.

    Google Scholar 

  • Bulalacao, L. (1983). The seasonal variation of the modern pollen rain of Metro Manila and its relationship to allergy. Saligang Saliksik, 12, 135–230.

    Google Scholar 

  • Bulalacao, L. (1994). Recognizing allergy-provoking plants in Las Pinas. National Museum Papers, 4(2), 78–83.

    Google Scholar 

  • Bulalacao, L. (1997). Pollen flora of the Philippines. Taguig, Metro Manila: DOST-TAPI-SPU.

    Google Scholar 

  • Cabauatan, C., & Ramos, J. (2012). Immunoglobulin E-binding reactivities of natural pollen grain extracts from selected grass species in the Philippines. Asia Pacific Allergy, 2, 136–143.

    Article  Google Scholar 

  • Cariñanos, P., Alcázar, P., Galán, C., & Domínguez, E. (2014). Environmental behaviour of airborne Amaranthaceae pollen in the southern part of the Iberian Peninsula, and its role in future climate scenarios. Science of the Total Environment, 470–471, 480–487.

    Article  Google Scholar 

  • Chakraborty, P., Gupta-Bhattacharya, S., Chakraborty, C., Lacey, J., & Chanda, S. (1998). Airborne allergenic pollen grains on a farm in West Bengal, India. Grana, 37, 53–57.

    Article  Google Scholar 

  • Chakraborty, P., Gupta-Bhattacharya, S., Chowdhury, I., Majumdar, M. R., & Chanda, S. (2001). Differences in concentrations of allergenic pollens and spores at different heights on an agricultural farm in West Bengal, India. Annals of Agricultural and Environmental Medicine, 8, 123–130.

    CAS  Google Scholar 

  • Chakraborty, P., Gupta-Bhattacharya, S., Roy, I., & Chanda, S. (2004). Identification of shared allergenic components from four common and dominant pollen taxa of Arecaceae. Current Science, 86(11), 1539–1543.

    Google Scholar 

  • Climate of the Philippines. (2015). http://www.pagasa.dost.gov.ph/index.php/climate-of-the-philippines. Accessed 9 November 2013

  • Clot, B., Gehrig, R., Pauling, A., & Pietragalla, B. (2012). The wind of change: Effects of climate change on airborne pollen concentrations. Alergologia Immunologia, 9(2–3), 139–140.

    Google Scholar 

  • Cua-Lim, F., Payawal, P., & Laserna, G. (1978). Studies on atmospheric pollens in the Philippines. Annals of Allergy, 40(2), 117–123.

    CAS  Google Scholar 

  • Fereidouni, M., Farid Hossini, R., Jabbari Azad, F., Ali Assarezadegan, M., & Varasteh, A. (2009). Skin prick test reactivity to common aeroallergens among allergic rhinitis patients in Iran. Allergologia et Immunopathologia, 37(2), 73–79. doi:10.1016/S0301-0546(09)71108-5.

    Article  Google Scholar 

  • Galan, C., González, P. C., Teno, P. A., & Vilches, E. D. (2007). Spanish aerobiology network (REA): Management and quality manual. Cordoba, Spain: Servicio De Publicaciones De La Universidad De Córdoba.

    Google Scholar 

  • Galán, C., Smith, M., Thibaudon, M., Frenguelli, G., Oteros, J., Gehrig, R., et al. (2014). Pollen monitoring: Minimum requirements and reproducibility of analysis. Aerobiologia,. doi:10.1007/s10453-014-9335-5.

    Google Scholar 

  • Garcia-Mozo, H., Dominguez-Vilches, E., & Galan, C. (2007). Airborne allergenic pollen in natural areas: Hornachuelos Natural Park, Cordoba, southern Spain. Annals of Agricultural and Environmental Medicine, 14, 63–69.

    Google Scholar 

  • Ghosh, D., Chakraborty, P., Gupta, J., Biswas, A., Roy, I., Das, S., & Gupta-Bhattacharya, S. (2012). Associations between pollen counts, pollutants, and asthma-related hospital admissions in a high-density Indian metropolis. The Journal of Asthma: Official Journal of the Association for the Care of Asthma, 49(8), 792–799. doi:10.3109/02770903.2012.716473.

    Article  CAS  Google Scholar 

  • Hara, Y., Ogasawara, T., Palijon, A., & Takeuchi, K. (2007). Quantitative and qualitative characteristics of greenery in suburban residential districts of Metro Manila. In Proceedings of International Symposium on City Planning, pp. 418–427.

  • Hess, D., & Tasa, D. (2011). McKnight’s physical geography: A landscape appreciation (10th edn). Physical geography: A landscape appreciation. Upper Saddle River, New Jersey: Pearson Education Inc.

    Google Scholar 

  • Hesse, M., Halbritter, H., Buchner, R., Weber, M., & Zetter, R. (2009). Pollen terminology: An illustrated handbook. Vienna: Springer-Verlag.

    Google Scholar 

  • Hijmans, R., Guarino, L., & Mathur, P. (2012). DIVA-GIS Version 7.5 Manual. http://www.diva-gis.org

  • Hirst, J. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39(2), 257–265.

    Article  Google Scholar 

  • Ho, T. M., Tan, B. H., Ismail, S., & Bujang, M. K. (1995). Seasonal prevalence of air-borne pollen and spores in Kuala Lumpur, Malaysia. Asian Pacific journal of allergy and Immunology/Launched by the Allergy and Immunology Society of Thailand, 13(1), 17–22.

    CAS  Google Scholar 

  • Holt, P. G., & Thomas, W. R. (2005). Sensitization to airborne environmental allergens: Unresolved issues. Nature Immunology, 6(10), 957–960. doi:10.1038/ni1005-957.

    Article  CAS  Google Scholar 

  • Jianan, X., Zhiyun, O., Hua, Z., Xiaoke, W., & Hong, M. (2007). Allergenic pollen plants and their influential factors in urban areas. Acta Ecologica Sinica, 27(9), 3820–3827.

    Article  Google Scholar 

  • Kasprzyk, I., & Walanus, A. (2010). Description of the main Poaceae pollen season using bi-Gaussian curves, and forecasting methods for the start and peak dates for this type of season in Rzeszów and Ostrowiec Sw. (SE Poland). Journal of Environmental Monitoring, 12(4), 906–916. doi:10.1039/b912256g.

    Article  CAS  Google Scholar 

  • Mandal, J., Manna, P., Chakraborty, P., Roy, I., & Gupta-Bhattacharya, S. (2009). Clinical and immunobiochemical characterization of airborne Delonix regia (Gulmohar tree) pollen and cross-reactivity studies with Peltophorum pterocarpum pollen: 2 dominant avenue trees from eastern India. Annals of Allergy Asthma Immunology, 103, 515–524. doi:10.1016/S1081-1206(10)60269-4.

    Article  CAS  Google Scholar 

  • Mandal, J., Roy, I., Chatterjee, S., & Gupta-Bhattacharya, S. (2008). Aerobiological investigation and in vitro studies of pollen grains from 2 dominant avenue trees in Kolkata, India. Journal of Investigational Allergology and Clinical Immunology, 18(1), 22–30.

    CAS  Google Scholar 

  • Moriwake, N. (2000). Distribution and structure of urban green spaces in Metro Manila. In Proceedings of International Symposium on City Planning, pp. 214–223.

  • Murakami, A., & Palijon, A. M. (2009). Study on the urbanization and the change of green space covered by trees in the urban fringe area of Metro Manila, the Philippines. Landscape Research Japan, 72(5), 693–696.

    Article  Google Scholar 

  • Njokuocha, R. C. (2006). Airborne pollen grains in Nsukka, Nigeria. Grana, 45, 73–80. doi:10.1080/00173130600555797.

    Article  Google Scholar 

  • Ong, T. C., Lim, S. H., Chen, X., Mohd Dali, S. D., Tan, H. T. W., Lee, B. W., et al. (2011). Fern spore and pollen airspora profile of Singapore. Aerobiologia, 28(2), 135–151. doi:10.1007/s10453-011-9217-z.

    Article  Google Scholar 

  • Payawal, P. (2004). Atmospheric pollen pollution in the Philippines and its implication on the incidence of inhalant allergy. In 7. Asian Apicultural Association Conference and 10. BEENET Symposium and Technofora (pp. 43–48). UPLB College, Laguna (Philippines).

  • Payawal, P., & Laserna, G. (1966). Aeropalynological studies in Manila, 1963. The Philippine Journal of Science 1, 95, 171–187.

    Google Scholar 

  • Prakashkumar, R., Mathew, P., & Ravindran, P. (1998). Studies on the allergenicity of nine tropical pollen allergens. Grana, 37(1998), 185–188.

    Article  Google Scholar 

  • Puc, M. (2011). Threat of allergenic airborne grass pollen in Szczecin, NW Poland: The dynamics of pollen seasons, effect of meteorological variables and air pollution. Aerobiologia, 27(3), 191–202. doi:10.1007/s10453-010-9188-5.

    Article  Google Scholar 

  • Puc, M., & Puc, M. (2004). Allergenic airborne grass pollen in Szczecin, Poland. Annals of Agricultural and Environmental Medicine, 11, 237–244.

    Google Scholar 

  • Pumhirun, P., Towiwat, P., & Mahakit, P. (1997). Aeroallergen sensitivity of Thai patients with allergic rhinitis. Asian Pacific Journal of Allergy and Immunology/Launched by the Allergy and Immunology Society of Thailand, 15(4), 183–185.

    CAS  Google Scholar 

  • Punt, W., Hoen, P. P., Blackmore, S., Nilsson, S., & Le Thomas, A. (2007). Glossary of pollen and spore terminology. Review of Palaeobotany and Palynology, 143(1–2), 1–81. doi:10.1016/j.revpalbo.2006.06.008.

    Article  Google Scholar 

  • Remo, I., & Laserna, G. (1976). Aeropalynological studies in the Manila area, 1970. The Philippine Journal of Science, 101, 106–114.

    Google Scholar 

  • The 2010 Census of Population and Housing Reveals the Philippine Population at 92.34 Million. (2012). National Statistics Office (NS0). http://web0.psa.gov.ph/content/2010-census-population-and-housing-reveals-philippine-population-9234-million. Accessed 3 February 2015

  • Wodehouse, R. (1935). Pollen grains. Their structure, identification and significance in science and medicine. New York and London: McGraw-Hill Companies, Inc.

    Google Scholar 

  • Ziello, C., Sparks, T. H., Estrella, N., Belmonte, J., Bergmann, K. C., Bucher, E., et al. (2012). Changes to airborne pollen counts across europe. PLoS One, 7(4), e34076. doi:10.1371/journal.pone.0034076.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Commission on Higher Education—Philippine Higher Education Research Network (CHED-PHERNET), Philippine Council for Industry, Energy and Emerging Technology Research and Development, Department of Science and Technology (PCCIERD-DOST) for financial support. We also thank the University of Santo Tomas Graduate School, University of Santo Tomas Research Center for the Natural Sciences, University of Santo Tomas College of Science and Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de Córdoba. We acknowledge the technical assistance of Jennifer Maries Yap, Rainier Ulrich Velasco and Joshua Evans Bajao during the weekly pollen sampling and monthly vegetation surveys.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maureen Sabit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabit, M., Ramos, J.D., Alejandro, G.J. et al. Seasonal distribution of airborne pollen in Manila, Philippines, and the effect of meteorological factors to its daily concentrations. Aerobiologia 32, 375–383 (2016). https://doi.org/10.1007/s10453-015-9414-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-015-9414-2

Keywords

Navigation