Field and laboratory methods to monitor lake aerosols for cyanobacteria and microcystins

Abstract

This study tested field and laboratory methods for the collection of cyanobacteria and microcystins emitted from lake water. These methods feature a highly portable, on-lake system for collecting aerosols directly from the lake, as well as a laboratory system for measurement of aerosols from freshly collected water samples under controlled conditions. Membrane air filters (0.45 μm) collected small particles such as picoplankton (0.2–2.0 μm) from aerosolized lake water. Picocyanobacteria were distinguished from other photosynthetic cells with epifluorescence microscopy using excitation filters for chlorophyll a (435 nm) and for phycobilin pigments (572 nm), characteristic of cyanobacteria. Aerosolization of picocyanobacteria ranged from 8872 to 167,297 cells m3 in the field and 23,764 to 365,011 cells m3 in the laboratory. Microcystin levels from field air filters ranged (below detectable limits) <13–384 pg MC m3 of air. The described methods could be used for monitoring aerosolized cyanobacteria for public health purposes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Anderson, R. J., Luu, H. A., Chen, D. Z. X., & Holmes, C. F. (1993). Chemical and biological evidence links microcystins to Salmon “Netpen Liver Disease”. Toxicon, 31, 1315–1323.

    Article  Google Scholar 

  2. Annadotter, H., Cronberg, G., Nystrand, R., & Rylander, R. (2005). Endotoxins from cyanobacteria and gram-negative bacteria as the cause of an acute influenza-like reaction after inhalation of aerosols. EcoHealth, 2, 209–221.

    Article  Google Scholar 

  3. Backer, L., Carmichael, W., Kirkpatrick, B., Williams, C., Irvin, M., Zhou, Y., et al. (2008). Recreational exposure to low concentrations of microcystins during an algal bloom in a small lake. Marine Drugs, 6(2), 389–406.

    CAS  Article  Google Scholar 

  4. Backer, L., McNeel, S., Barber, T., Kirkpatrick, B., Williams, C., Irvin, M., et al. (2010). Recreational exposure to microcystins during algal blooms in two California lakes. Toxicon, 55, 909–921.

    CAS  Article  Google Scholar 

  5. Banack, S. A., Caller, T., Henegan, P., Haney, J., Murby, A., Metcalf, J. S., et al. (2015). Detection of cyanotoxins, β-N-methylamino-l-alanine and microcystins, from a lake surrounded by cases of amyotrophic lateral sclerosis. Toxins, 7, 322–336.

    CAS  Article  Google Scholar 

  6. Brodie, E. L., DeSantis, T. Z., Moberg Parker, J. P., Zubietta, I. X., Piceno, Y. M., & Andersen, G. L. (2007). Urban aerosols harbor diverse and dynamic bacteria populations. Proceedings of the National Academy of Science, 104, 299–304.

    CAS  Article  Google Scholar 

  7. Brown, R. M, Jr, Larson, D. H., & Bold, H. C. (1964). Airborne algae: Their abundance and heterogeneity. Science, 143, 583–585.

    Article  Google Scholar 

  8. Burns, C. W., & Stockner, J. G. (1991). Picoplankton in six New Zealand lakes: Abundance in relation to season and trophic state. International Review of Hydrobiology, 76, 523–536.

    Article  Google Scholar 

  9. Caller, T., Doolin, J., Haney, J., Murby, A., West, K., Farrar, H., et al. (2009). A cluster of amyotrophic lateral sclerosis in New Hampshire: A possible role for toxic cyanobacteria blooms. Amyotrophic Lateral Sclerosis, 10(sup2), 101–108.

    CAS  Article  Google Scholar 

  10. Callieri, C. (2008). Picophytoplankton in freshwater ecosystems: The importance of small-sized phototrophs. Freshwater Reviews, 1, 1–28.

    Article  Google Scholar 

  11. Callieri, C. (2010). Single cells and microcolonies of freshwater picocyanobacteria: A common ecology. Journal of Limnology, 69(2), 257–277.

    Article  Google Scholar 

  12. Callieri, C., & Stockner, J. G. (2002). Freshwater autotrophic picoplankton: A review. Journal of Limnology, 61, 1–14.

    Article  Google Scholar 

  13. Carmichael, W.W. (1992). Status report on planktonic cyanobacteria (Blue-green algae) and their toxins. In Technical Report Environmental Protection Agency, No. 600/R-92/079. U.S. EPA, Cincinnati, OH.

  14. Cheng, Y. S., Yue Zhou, C., Irvin, M., Kirkpatrick, B., & Backer, L. C. (2007). Characterization of aerosols containing microcystin. Marine Drugs, 5(4), 136–150.

    CAS  Article  Google Scholar 

  15. Chorus, I. (Ed.). (2001). Cyanotoxins: Occurrence, causes, consequences (p. 357). Berlin: Springer.

  16. Chorus, I., & Bartram, J. (1999). Toxic cyanobacteria in water. In I. Chorus & J. Bartram (Eds.), World Health Organization (p. 416). Routledge: E & FN Spon.

    Google Scholar 

  17. Chrisostomou, A., Moustaka-Gouni, M., Sgardelis, S., & Lanaras, T. (2009). Air-dispersed phytoplankton in a Mediterranean river reservoir system (Aliakmon-Polyphytos, Greece). Journal of Plankton Research, 31, 877–884.

    CAS  Article  Google Scholar 

  18. Crush, J., Briggs, L., Sprosen, J., & Nichols, S. (2008). Effect of irrigation with lake water containing microcystins on microcystin content and growth of ryegrass, clover, rape and lettuce. Journal of Environmental Toxicology, 23, 246–252.

    CAS  Article  Google Scholar 

  19. Darwin, C. R. (1846). An account of the fine dust which often falls on vessels in the Atlantic Ocean. Quarterly Journal of the Geological Society of London, 2, 26–30.

    Article  Google Scholar 

  20. Despres, V. R., Nowoisky, J. F., Klose, M., Conrad, R., Andreae, M. O., & Poeschl, U. (2007). Characterization of primary biogenic aerosol particles in urban, rural and high-alpine air by DNA sequence and restriction fragment analysis of ribosomal RNA genes. Biogeosciences, 4, 1127–1141.

    CAS  Article  Google Scholar 

  21. Domingos, P., Rubim, T., Molica, R., Azevedo, S., & Carmichael, W. (1999). First report of microcystin production by picoplanktonic cyanobacteria isolated from a Northeast Brazilian drinking water supply. Journal of Environmental Toxicology, 14, 31–35.

    CAS  Article  Google Scholar 

  22. Dueker, M. E., O’Mullan, G. D., Juhl, A. R., Weathers, K. C., & Uriarte, M. (2012). Local environmental pollution strongly influences culturable bacterial aerosols at an urban aquatic superfund site. Environmental Science and Technology, 46, 10926–10933.

    CAS  Article  Google Scholar 

  23. Dunlop, R. A., Cox, P. A., Banack, S. A., & Rodgers, K. J. (2013). The non-protein amino acid BMAA is misincorporated into human proteins in place of l-Serine causing protein misfolding and aggregation. PLoS One, 8(9), 1–8.

    Article  Google Scholar 

  24. Edwards, C., & Lawton, L. (2010). Assessment of microcystin purity using charged aerosol detection. Journal of Chromatography A, 1217, 5233–5238.

    CAS  Article  Google Scholar 

  25. Falconer, I. R., & Humpage, A. R. (1996). Tumor promotion by cyanobacterial toxins. Phycologia, 35, 74–79.

    Article  Google Scholar 

  26. Fleming, L., Backer, L., & Baden, D. (2005). Overview of aerosolized Florida red tide toxins: Exposures and effects. Environmental Health Perspectives, 113, 618–620.

    CAS  Article  Google Scholar 

  27. Gaete, V. E., Canelo, N., Lagos, N., & Zambrano, F. (1994). Inhibitory effects of Microcystis aeruginosa toxin on the ion pumps of the gills of freshwater fish. Toxicon, 32(1), 121–127.

    CAS  Article  Google Scholar 

  28. Galey, F. D., Beasley, V. R., Carmichael, W. W., Kleppe, G., Hooser, S. B., & Haschek, W. M. (1987). Blue-green algae (Microcystis aeruginosa) hepatotoxicosis in dairy cows. American Journal of Veterinary Research, 48, 1415–1420.

    CAS  Google Scholar 

  29. Gambaro, A., Barbaro, E., Zangrando, R., & Barbante, C. (2012). Simultaneous quantification of microcystins and nodularin in aerosol samples using high-performance liquid chromatography/negative electrospray ionization tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 26, 1497–1506.

    CAS  Article  Google Scholar 

  30. Genitsaris, S., Kormas, K. A., & Moustaka-Gouni, M. (2011). Airborne algae and cyanobacteria: Occurrence and related health effects. Frontiers in Bioscience, 3, 772–787.

    Google Scholar 

  31. Gregory, P. H., Hamilton, E. D., & Sreeramulu, T. (1955). Occurrence of the alga gloeocapsa in the air. Nature, 176(4496), 1270.

    Article  Google Scholar 

  32. Haney, J.F. & Ikawa, M. (2000). A survey of 50 NH lakes for microcystins (MCs). In Final Report. U.S. Geological Survey, Reston, VA. University of New Hampshire, Durham, NH.

  33. Hathaway, R.A. (2001). Bioaccumulation of microcystin in crayfish and mussels within New Hampshire lakes and their potential as biomonitors. Masters Thesis. University of New Hampshire, Durham, NH.

  34. Hudnell, H.K. (2008). In Proceedings of the Interagency, International Symposium on Cyanobacterial Harmful Algal Blooms (ISOC-HAB): State-of-The-Science and Research Needs, Advances in Experimental Medicine and Biology. Springer Press.

  35. Ibelings, B., Bruning, K., deJonge, J., Wolfstein, K., Dionisio, L., Postma, P., & Burger, T. (2005). Distribution of microcystins in a lake foodweb: No evidence for biomagnifications. Microbial Ecology, 49, 487–500.

    CAS  Article  Google Scholar 

  36. Jochimsen, E. M., Carmichael, W. W., An, J., Cardo, D. M., Cookson, S. T., Holmes, C. E. M., et al. (1998). Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. New England Journal of Medicine, 38, 873–878.

    Article  Google Scholar 

  37. Lampert, W. (1978). Release of dissolved organic carbon by grazing zooplankton. Limnology and Oceanography, 23(4), 831–834.

    CAS  Article  Google Scholar 

  38. Levesque, B., Gervais, M. C., Chevalier, P., Gauvin, D., Anassour-Laouan-Sidi, E., Gingras, S., et al. (2013). Prospective study of acute health effects in relation to exposure to cyanobacteria. Science of the Total Environment, 466, 397–403.

    Google Scholar 

  39. Li, A., Tian, Z., Li, J., Yu, R., Banack, S., & Wang, Z. (2010). Detection of the neurotoxin BMAA with cyanobacteria isolated from freshwater in China. Toxicon, 55, 947–953.

    CAS  Article  Google Scholar 

  40. Luty, E. T., & Hoshaw, R. W. (1967). Airborne algae of the Tucson and Santa Catalina Mountain areas. Journal of the Arizona Academy of Science, 4, 179–182.

    Article  Google Scholar 

  41. Melia, M. B. (1984). The distribution and relationship between palynomorphs in aerosols and deep-sea sediments off the coast of Northwest Africa. Marine Geology, 58(3–4), 345–371.

    Article  Google Scholar 

  42. Mitrovic, M., Allis, O., Furey, A., & James, K. J. (2005). Bioaccumulation and harmful effects of microcystins-LR in the aquatic plants Lemna minor and Wolffia arrhiza and the filamentous alga Chladophora fracta. Ecotoxicology and Environmental Safety, 61, 345–352.

    CAS  Article  Google Scholar 

  43. Morris, C. E., Sands, D. C., Bardin, M., Jaenicke, R., Vogel, B., Leyronas, C., et al. (2011). Microbiology and atmospheric processes: Research challenges concerning the impact of airborne micro-organisms on the atmosphere and climate. Biogeosciences, 8, 17–25.

    CAS  Article  Google Scholar 

  44. Murby, A. (2009). Spatial distributions of cyanobacteria and microcystins in New Hampshire lakes of varying trophic conditions. Masters Thesis. University of New Hampshire, Durham, NH.

  45. Polymenakou, P., Mandalakis, M., Stephanou, E., & Tselephides, A. (2008). Particle size distribution of airborne microorganisms and pathogens during an intense African dust event in the Eastern Mediterranean. Environmental Health Perspectives, 116, 292–296.

    Article  Google Scholar 

  46. Sahu, N., & Tangutur, A. D. (2014). Airborne algae: Overview of the current status and its implications on the environment. Aerobiologia, doi:10.1007/s10453-014-9349-z.

    Google Scholar 

  47. Schlichting, H. E, Jr. (1969). The importance of airborne algae and protozoa. Journal of the Air Pollution Control Association, 19, 946–951.

    Article  Google Scholar 

  48. Schlichting, H. E, Jr. (1974). Periodicity and seasonality of airborne algae and protozoa. In H. Leith (Ed.), Phenology and seasonality modeling (pp. 407–413). Berlin: Springer.

    Google Scholar 

  49. Schlichting Jr., H.E., Brown Jr., R.M. & Smith, P.E. (1973). Airborne algae of Hawaii: A model for coordinated aerobiological research. In W. S. Benninghoff & R. L. Edmonds (Eds.). In Proceeding Workshop/Conference I. Ecological Systems Approaches to Aerobiology. II. Development, Demonstration, and Evaluation of Models. US IBP Handbook, vol. 3, (pp. 150–155).

  50. Sharmaa, N. K., & Rai, A. K. (2008). Allergenicity of airborne cyanobacteria Phormidium fragile and Nostoc muscorum. Ecotoxicology and Environmental Safety, 69, 158–162.

    Article  Google Scholar 

  51. Smith, J. L., & Haney, J. F. (2006). Foodweb transfer, accumulation, and depuration of microcystins, a cyanobacterial toxin, in pumpkinseed sunfish (Lepomis gibbosus). Toxicon, 48(5), 580–589.

    CAS  Article  Google Scholar 

  52. Stommel, E. W., Field, N. C., & Caller, T. A. (2012). Aerosolization of cyanobacteria as a risk factor for amyotrophic lateral sclerosis. Medical Hypotheses, 80, 142–145.

    Article  Google Scholar 

  53. Trubetskova, I. L., & Haney, J. F. (2006). Effects of differing concentrations of microcystin-producing Microcystis aeruginosa on growth, reproduction, survivorship and offspring of Daphnia magna. Archive Hydrobiologia, 167, 533–546.

    CAS  Article  Google Scholar 

  54. Wood, S. A., & Dietrich, D. R. (2011). Quantitative assessment of aerosolized cyanobacterial toxins at two New Zealand lakes. Journal of Environmental Monitoring, 13, 1617–1624.

    CAS  Article  Google Scholar 

  55. Zimba, P. V., Koo, L., Gaunt, P. S., Brittain, S., & Carmichael, W. W. (2001). Confirmation of catfish, Ictalurus punctatus (Rafinesque), mortality from Microcystis toxins. Journal of Fish Diseases, 24, 41–47.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Thank you to Alisha Stommel, Elijah Stommel, and Sarah Stowell for their time in the field with the aerosol collections. Additional thanks to Kate Langley for her continued effort with these methods. Partial funding was provided by the New Hampshire Agricultural Experimental Station. The Scientific Contribution Number is 2634. This work was supported by the USDA National Institute of Food and Agriculture Hatch 569 Project, Accession 211727.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. L. Murby.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 59 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Murby, A.L., Haney, J.F. Field and laboratory methods to monitor lake aerosols for cyanobacteria and microcystins. Aerobiologia 32, 395–403 (2016). https://doi.org/10.1007/s10453-015-9409-z

Download citation

Keywords

  • Aerosols
  • Cyanobacteria
  • Microcystins
  • Monitoring