Skip to main content

Advertisement

Log in

Prevalence of multi-drug-resistant (MDR) bacteria in air samples from indoor and outdoor environments

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

The prevalence of multi-drug-resistant (MDR) bacteria in 48 air samples from indoor environments, surgical rooms, dental surgery and waste management plants has been investigated. A total of 280 bacterial strains belonging to different genera were isolated, and the operating rooms were the most contaminated ones (107 isolates), with all the isolates belonging to Gram-positive cocci (51.5 % Micrococcus spp., 48.5 % Staphylococcus spp.). Only 5 % of the isolates was sensitive to all the antibiotics tested, while the remaining strains resulted resistant to three (13 %), four (14 %), five (9 %) and six (10 %) antibiotics. Correlation between the resistance patterns and the environmental source of MDR bacteria isolates also emerged from the present investigation. This study confirms the high presence of antibiotic-resistant bacteria in air samples, finding that represents a threat for the possible transfer of resistance genes to pathogenic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen, H. K., Donato, J., Wang, H. H., Cloud-Hansen, K. A., Davies, J., & Handelsman, J. (2010). Call of the wild: Antibiotic resistance genes in natural environments. Nature Reviews Microbiology, 8(4), 251–259.

    Article  CAS  Google Scholar 

  • Barza, M., & Gorbach, S. L. (2002). The need to improve antimicrobial use in agriculture: Ecological and human health consequences. Clinical Infectious Disease, 34, S71–S144.

    Article  Google Scholar 

  • Ben-Ami, R., Rodriguez-Baño, J., & Arslan, H. (2009). A multinational survey of risk factors for infection with extended-spectrum β-lactamase-producing Enterobacteriaceae in nonhospitalized patients. Clinical Infectious Disease, 49, 682–690.

    Article  Google Scholar 

  • Bernard, M. C., Lanotte, P., Lawrence, C., Goudeau, A., & Bernard, L. (2012). Air contamination around patients colonized with multidrug-resistant organisms. Infection Control and Hospital Epidemiology, 33, 949–951.

    Article  Google Scholar 

  • Clinical and Laboratory Standard Institutes (CLSI) Performance Standards for Antimicrobial Susceptibility Testing 2012.

  • David, M. Z., & Daum, R. S. (2010). Community-associated methicillin-resistant Staphylococcus aureus: Epidemiology and clinical consequences of an emerging epidemic. Clinical Microbiology Reviews, 23, 616–687.

    Article  CAS  Google Scholar 

  • Davies, J. E. (1997). Origins, acquisition and dissemination of antibiotic resistance determinants. Ciba Foundation Symposium, 207, 15–27.

    CAS  Google Scholar 

  • Gandara, A., Mota, L. C., Flores, C., Perez, H. R., Green, C. F., & Gibbs, S. G. (2006). Isolation of Staphylococcus aureus and antibiotic-resistant Staphylococcus aureus from residential indoor bioaerosols. Environmental Health Perspectives, 12, 1859–1864.

    Google Scholar 

  • Gilbert, Y., Veillette, M., & Duchaine, C. (2010). Airborne bacteria and antibiotic resistance genes in hospital rooms. Aerobiologia, 26, 185–194.

    Article  Google Scholar 

  • Hota, B. (2004). Contamination, disinfection, and cross-colonization: Are hospital surfaces reservoirs for nosocomial infection? Clinical Infectious Diseases, 39(8), 1182–1189.

    Article  Google Scholar 

  • Icgen, B., Gurakan, G. C., & Ozcengiz, G. (2002). Characterisation of local isolates of Enterobacteriaceae from Turkey. Microbiological Research, 157, 233–238.

    Article  CAS  Google Scholar 

  • Lai, K., Emberlin, J., Colbeck, I. (2009). Outdoor environments and human pathogens in air. Environmental Health, 8 (Suppl 1:1–5).

  • Levy, S. B., & Marshall, B. (2004). Antibacterial resistance worldwide: causes, challenges and responses. Nature Medicine (supplement), 10, 5122–5129.

    Google Scholar 

  • Li, C. S., & Hou, P. A. (2003). Bioaerosol characteristics in hospital clean rooms. The Science of The Total Environment, 305(1–3), 169–176.

    Article  CAS  Google Scholar 

  • Ling, A. L., Pace, N. R., Hernandez, M. T., & LaPara, T. M. (2013). Tetracycline resistance and Class 1 integron genes associated with indoor and outdoor aerosols. Environmental Science and Technology, 47, 4046–4052.

    Article  CAS  Google Scholar 

  • Livermore, D. M. (2005). Minimising antibiotic resistance. The Lancet Infectious Disease, 5, 450–459.

    Article  Google Scholar 

  • Livermore, D. M. (2009). Has the era of untreatable infections arrived? Journal of Antimicrobial Chemotherapy, 64, i29–i36.

    Article  CAS  Google Scholar 

  • Macrina, F. L., Kopecko, D. J., Jones, K. R., Ayers, D. J., & Mc Cowen, S. M. (1978). A multiple plasmid-containing Escherichia coli strain: Convenient source of size reference plasmid molecules. Plasmid, 1(3), 417–420.

    Article  CAS  Google Scholar 

  • Martinez, J. L. (2009). Environmental pollution by antibiotics and by antibiotic resistance determinants. Environmental Pollution, 157, 2893–2902.

    Article  CAS  Google Scholar 

  • O’Sullivan, D. J., & Klaenhammer, R. (1993). Rapid mini-prep isolation of high quality plasmid DNA from Lactococcus and Lactobacillus spp. Applied and Environmental Microbiology, 59, 2730–2733.

    Google Scholar 

  • Reynolds, K. A., Watt, P. M., Boone, S. A., & Gerba, C. P. (2005). Occurrence of bacteria and biochemical markers on public surfaces. International Journal of Environmental Health Research, 15(3), 225–234.

    Article  CAS  Google Scholar 

  • Septimus, E. J., & Kuper, K. M. (2009). Clinical challenges in addressing resistance to antimicrobial drugs in the twenty-first century. Clinical Pharmacology and Therapeutics, 86, 336–339.

    Article  CAS  Google Scholar 

  • Strommenger, B., Kettlitz, C., Werner, G., & Witte, W. (2003). Multiplex PCR assay for simultaneous detection of nine clinically relevant antibiotic resistance genes in Staphylococcus aureus. Journal of Clinical Microbiology, 41, 4089–4094.

    Article  CAS  Google Scholar 

  • Tang, J. W., Li, Y., Eames, I., Chan, P. K., & Ridgway, G. L. (2006). Factors involved in the aerosol transmission of infection and control of ventilation in healthcare premises. Journal of Hospital Infection, 64(2), 100–114.

    Article  CAS  Google Scholar 

  • Teuber, M. (2001). Veterinary use and antibiotic resistance. Current Opinion in Microbiology, 4, 493–499.

    Article  CAS  Google Scholar 

  • Vela, J., Hildebrandt, K., Metcalfe, A., Rempel, H., Bittman, S., Topp, E., & Diarra, M. (2012). Characterization of Staphylococcus xylosus isolated from broiler chicken barn bioaerosol. Poultry Science, 91, 3003–3012.

    Article  CAS  Google Scholar 

  • Zhou, F., & Wang, Y. (2013). Characteristics of antibiotic resistance of airborne Staphylococcus isolated from metro stations. International Journal of Environmental Research and Public Health, 10(6), 2412–2426.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia Messi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Messi, P., Sabia, C., Anacarso, I. et al. Prevalence of multi-drug-resistant (MDR) bacteria in air samples from indoor and outdoor environments. Aerobiologia 31, 381–387 (2015). https://doi.org/10.1007/s10453-015-9371-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-015-9371-9

Keywords

Navigation