Aerobiologia

, Volume 30, Issue 2, pp 111–122

Airborne pollen records and their potential applications to the conservation of biodiversity

  • Álvaro Fernández-Llamazares
  • Jordina Belmonte
  • Martí Boada
  • Sara Fraixedas
Review Paper

Abstract

The magnitude and complexity of the current erosion of plant biodiversity call for the development of interdisciplinary tools that enable an early detection of its effects and the establishment of effective management strategies. Indeed, plant sciences face the complex task of identifying the ecological information needed for the conservation challenge. Along this line should be placed the approach of aerobiology to gather the essential information for the development of plant recovery guidelines. In this work, we aim to discuss the potential role of airborne pollen monitoring in providing relevant data for the protection of plants and its potential applications to the management of plant diversity. To this end, we review three study cases where aerobiological monitoring can provide significant insights on conservation science. The present study is a contribution to plant conservation biology through long-term aeropalynological sampling, on the basis that pollen records constitute a suitable indicator for evaluating resource conservation of vegetation responding to environmental fluctuations. In view of its position between botany and meteorology, the contribution of aerobiological knowledge to biodiversity conservation can be very relevant and should be explored thoroughly.

Keywords

Plant conservation Climate change Biogeography Pollen counts Pollen transport Genetic diversity 

References

  1. Akeroyd, J. (2002). A rational look at extinction. Plant Talk, 28, 35–37.Google Scholar
  2. Alba, F., Sabariego, S., Díaz, C., De Linares, C., Nieto, D., & Shiaffino, S. (2008). Pollen records as bioindicators of water deficit in the sub-desert of Almeria (SE Spain). In P. Comtois & B. Clot (Eds.), Aerobiological monographs (pp. 67–84). Zurich: MeteoSwiss and the University of Montréal.Google Scholar
  3. Asero, R. (2002). Birch and ragweed pollinosis north of Milan: A model to investigate the effects of exposure to “new” airborne allergens. Allergy, 57, 1063–1066. doi:10.1034/j.1398-9995.2002.23766.x.Google Scholar
  4. Avolio, E., Pasqualoni, L., Federico, S., Fornaciari, M., Bonofiglio, T., Orlandi, F., et al. (2008). Correlation between large-scale atmospheric fields and the olive pollen seaton in Central Italy. International Journal of Biometeorology, 52, 787–796. doi:10.1007/s00484-008-0172-5.Google Scholar
  5. Bakkenes, M., Alkemade, J. R. M., Ihle, F., Leemans, R., & Latour, J. B. (2002). Assessing effects of forecast climate change on the diversity and distribution of European higher plants for 2050. Global Change Biology, 8, 390–407.Google Scholar
  6. Beardmore, J. A. (1983). Extinction, survival, and genetic variation. In C. M. Schonewald-Cox, S. M. Chambers, B. MacBryde, & W. L. Thomas (Eds.), Genetics and conservation: A reference for managing wild animals and plant populations (pp. 125–151). Menlo Park, CA: Benjamin/Cummings.Google Scholar
  7. Beggs, P. J. (2004). Impacts of climate change on aeroallergens: past and future. Clinical and Experimental Allergy, 34, 1507–1513.Google Scholar
  8. Beguería, S., López-Moreno, J. I., Lorente, A., Seeger, M., & García-Ruiz, J. M. (2003). Assessing the effect of climate oscillations and land-use changes on streamflow in the Central Spanish Pyrenees. Ambio, 32, 283–286.Google Scholar
  9. Belmonte, J., Alarcón, M., Ávila, A., Scialabba, E., & Pino, D. (2008). Long-range transport of beech (Fagus sylvatica L.) pollen to Catalonia (north-eastern Spain). International Journal of Biometeorology, 52, 675–687. doi:10.1007/s00484-008-0160-9.Google Scholar
  10. Belmonte, J., Vendrell, M., Roure, J. M., Vidal, J., Botey, J., & Cadahía, A. (2000). Levels of Ambrosia pollen in the atmospheric spectra of Catalan aerobiological stations. Aerobiologia, 16, 93–99.Google Scholar
  11. Belmonte, J., & Vilà, M. (2004). Atmospheric invasion of non-native pollen in the Mediterranean region. American Journal of Botany, 91(8), 1243–1250.Google Scholar
  12. Benninghoff, W. S. (1991). Aerobiology and its significance to biogeography and ecology. Grana, 30(1), 9–15.Google Scholar
  13. Björkman, L. (1996). The Late Holocene history of beech, Fagus sylvatica, and Norway spruce, Picea abies, at stand-scale in southern Sweden. Ph.D. thesis, Department of Quaternary Geology, Lund University, Sweden.Google Scholar
  14. Bortenschlager, S., & Bortenschlager, I. (2005). Altering airborne pollen concentrations due to the global warming. A comparative analysis of airborne pollen records from Innsbruck and Obergurgl (Austria) for the period 1980–2001. Grana, 44, 172–180.Google Scholar
  15. Bradshaw, R. H. W. (2004). Past anthropogenic influence on European forests and some possible genetic consequences. Forest Ecology and Management, 197, 203–212.Google Scholar
  16. Bramwell, D. (2002). How many plant species are there? Plant Talk, 28, 32–34.Google Scholar
  17. Brummitt, N., & Bachman, S. (2010). Plants under pressure, a global assessment. The first report of the IUCN Sampled Red List Index for plants. Kew, United Kingdom: Royal Botanic Gardens.Google Scholar
  18. Bullock, J. M., White, S. M., Prudhomme, C., Tansey, C., Perea, R., & Hooftman, D. A. P. (2012). Modelling spread of British wind-dispersed plants under future wind speeds in changing climate. Journal of Ecology, 100, 104–115. doi:10.111/j.1365-2745.2011.01910.x.Google Scholar
  19. Burczyck, J., DiFazio, S. P., & Adans, W. T. (2004). Gene flow in forest trees: How far do genes really travel? Forest Genetics, 11, 1–14.Google Scholar
  20. Callmander, M. W., Schatz, G. E., & Lowry, P. P, I. I. (2005). IUCN Red List assessment and the global strategy for plant conservation: Taxonomists must act now. Taxon, 54(4), 1047–1050.Google Scholar
  21. Camarero, J. J., & Gutiérrez, E. (2003). Pace and pattern of recent treeline dynamics: Response of ecotones to climatic variability in the Spanish Pyrenees. Climate Change, 63, 181–2000.Google Scholar
  22. Campbell, L. M., Gray, N. J., Hazen, E. L., & Shackeroff, J. M. (2009). Beyond baselines: Rethinking priorities for ocean conservation. Ecology and Society, 14(1), 14.Google Scholar
  23. Cariñanos, P., Galan, C., Alcázar, P., & Dominguez, E. (2004). Airborne pollen records response to climatic conditions in arid areas of the Iberian peninsula. Environmental and Experimental Botany, 52, 11–22.Google Scholar
  24. Cariñanos, P., Alcázar, P., De la Corte, E., Díaz de la Guardía, C., González, F. J., Hidalgo, P. J., et al. (2010a). Aerobiology and biogeography of genus Artemisia in Andalucia. In B. Clot (Ed.), 9th International congress on aerobiology (p. 31). Buenos Aires, Argentina: International Association for Aerobiology.Google Scholar
  25. Cariñanos, P., Díaz de la Guardia, C., Algarra, J. A., De Linares, C., & Irurita, J. M. (2013). The pollen counts as bioindicator of meteorological trends and tool for assessing the status of endangered species: The case of Artemisia in Sierra Nevada (Spain). Climatic Change,. doi:10.1007/s10584-013-0751-2.Google Scholar
  26. Cariñanos, P., Galán, C., Alcázar, P., & Domínguez, E. (2010b). Airbone pollen records and status of the anemophilous flora in arid areas of the Iberian Peninsula. Journal of Arid Environments, 74, 1102–1105.Google Scholar
  27. Carisse, O., Savary, S., & Willocquet, L. (2008). Spatiotemporal relationships between disease development and airborne inoculums in unmanaged and managed Botrytis leaf blight epidemics. Phytopathology, 98(1), 38–44.Google Scholar
  28. Cecchi, L., Torrigiani, T., Albertini, R., Zanca, M., Ridolo, E., Usberti, I., et al. (2007). The contribution of long-distance transport to the presence of Ambrosia pollen in central northern Italy. Aerobiologia, 23, 145–151. doi:10.1007/s10453-007-9060-4.Google Scholar
  29. Cerceau-Larrival, M.-Th. (1989). La conservation à long terme du pollen par lyophilisation, au service des plantes menacées. In: M. Chauvet (Ed.), Plantes sauvages menacées de France. Bilan et protection pp. 355-376. Paris, France: Actes du Colloque, Brest 1987 – BRG.Google Scholar
  30. Chuine, I., Cour, P., & Rousseau, D. D. (1998). Fitting models predicting dates of flowering of temperate-zone trees using simulated annealing. Plant, Cell and Environment, 21, 455–466.Google Scholar
  31. Clot, B. (2003). Trends in airborne pollen: An overview of 21 years of data in Neuchâtel (Switzerland). Aerobiologia, 19, 227–234.Google Scholar
  32. Comps, B., Gömöry, D., Letouzey, J., Thiébaut, B., & Petit, R. J. (2001). Diverging trends between heterozygosity and allelic richness during postglacial colonization in the European beech. Genetics, 157, 389–397.Google Scholar
  33. Comtois, P., & Isard, S. (1999). Aerobiology: Coming of age in a new millennium. Aerobiologia, 15, 259–266.Google Scholar
  34. Confalonieri, U., Menne, B., Akhtar, R., Ebi, K. L., Hauengue, M., Kovats, R. S., et al. (2007). Human health. In M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, & C. E. Hanson (Eds.), Climate change 2007: Impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change (IPCC) of the United Nations (pp. 391–431). Cambridge, United kingdom: Cambridge University Press.Google Scholar
  35. CPC, Center for Plant Conservation. (1991). Center for plant conservation comes to the garden. Missouri Botanical Garden Bulletin, Jan–Feb 3–5.Google Scholar
  36. Cvitanovic, S., Znaor, L., Perisic, D., & Grbic, D. (2004). Hypersensitivity to pollen allergens on Adriatic Coast. Arhiv za Higijenu Rada, I Toksikologiyu, 34, 147–154.Google Scholar
  37. D’Odorico, P., Yoo, J., & Jaeger, S. (2002). Changing seasons: An effect of the North Atlantic oscillation? Journal of Climate, 15, 435–445.Google Scholar
  38. Damialis, A., Halley, J. M., Gioulekas, D., & Vokou, D. (2007). Long-term trends in atmospheric pollen levels in the city of Thessaloniki, Greece. Atmospheric Environment, 41, 7011–7021.Google Scholar
  39. Dana, E.D., Sanz-Elorza, M., & Sobrino, E. (2003). Plant invaders in Spain (Check-list). The Unwanted Citizens http://www.med-alienplants.org/checklist.pdf Accessed 13 June 2010.
  40. Davis, S. D., Droop, S. J. M., Gregerson, P., et al. (1986). Plants in danger. What do we know?. Gland, Switzerland; Cambridge, United Kingdom: International Union for Conservation of Nature and Natural Resources.Google Scholar
  41. Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C., & Mace, G. M. (2011). Beyond predictions: Biodiversity conservation in a changing climate. Science, 332, 53–58. doi:10.1126/science.1200303.Google Scholar
  42. De Roa, E., Albaladejo, M. J., Santaeufemia, X., & Úrios, N. (2009). Memòria de gestió 2009. El Prat del Llobregat, Barcelona, Spain: Consorci per a la Protecció i la Gestió dels Espais Naturals del Delta del Llobregat.Google Scholar
  43. Eberhart, S. A., Roos, E. E., & Towill, L. E. (1991). Strategies for long-term management of germplasm collections. In D. A. Falk & K. E. Holsinger (Eds.), Genetics and conservation of rare plants (pp. 135–145). New York, USA: Oxford University Press.Google Scholar
  44. Ellstrand, N. C. (1992). Gene flow by pollen: Implications for plant conservation genetics. Oikos, 63, 77–86.Google Scholar
  45. Ellstrand, N. C., & Hoffman, C. A. (1990). Hybridization as an avenue of escape for engineered genes. BioScience, 40, 438–442.Google Scholar
  46. Emberlin, J., Detandt, M., Gehrig, R., Jaeger, S., Nolard, N., & Rantio-Lehtimäki, A. (2002). Responses in the start of Betula (birch) pollen seasons to recent changes in spring temperatures across Europe. International Journal of Biometeorology, 46, 159–170. doi:10.1007/s00484-002-0139-x.Google Scholar
  47. Emberlin, J., Jäeger, S., Domínguez, E., Galán, C., Hodal, L., Mandrioli, P., et al. (2000). Temporal and geographical variations in grass pollen seasons in areas of western Europe: An analysis of season dates at sites of the European pollen information system. Aerobiologia, 16, 373–379.Google Scholar
  48. Emberlin, J., Laaidi, M., Detandt, M., Gherig, R., Jaeger, S., Myszkowska, D., et al. (2007a). Changement climatique et évolution du contenu pollinique dans l’air dans sept pays européens: exemple du bouleau. Revue française d’allergologie et d’immunologie clinique, 47, 57–63. doi:10.1016/j.allerg.2006.11.005.Google Scholar
  49. Emberlin, J., Mullins, J., Corden, J., Millington, W., Brooke, M., Savage, M., et al. (1997). The trend to earlier birch pollen seasons in the UK: A biotic response to changes in weather conditions? Grana, 36, 29–33.Google Scholar
  50. Emberlin, J., Smith, M., Close, R., & Adams-Groom, B. (2007b). Changes in the pollen seasons of the early flowering trees Alnus spp. and Corylus spp. in Worcester United Kingdom 1996–2005. International Journal of Biometeorology, 51, 181–191. doi:10.1007/s00484-006-0059-2.Google Scholar
  51. Ennos, R. A. (1994). Estimating the relative rates of pollen and seed migration among plant populations. Heredity, 72, 250–259.Google Scholar
  52. Falk, D. (1990). Integrated strategies for conserving plant diversity. Annals of the Missouri Botanical Garden, 77, 38–47.Google Scholar
  53. Fernández-Llamazares, Á., Belmonte, J., Alarcón, M., & López-Pacheco, M. (2012a). Ambrosia L. in Catalonia (NE Spain): Expansion and aerobiology of a new bioinvader. Aerobiologia, 28, 435–451. doi:10.1007/s10453-012-9247-1.Google Scholar
  54. Fernández-Llamazares, Á., Belmonte, J., De Linares, C., Cariñanos, P., & Díaz de la Guardia, C. (2012b). Aerobiological data and biodiversity conservation: The missing link. Allergology and Immunology, 9, 2–3.Google Scholar
  55. Fernández-Llamazares, Á., Belmonte, J., Delgado, R., & De Linares, C. (2013). A statistical approach to bioclimatic trend detection in the airborne pollen records of Catalonia (NE Spain). International Journal of Biometeorology,. doi:10.1007/s00484-013-0632-4.Google Scholar
  56. Frei, T. (1998). The effects of climate change in Switzerland 1969–1996 on airborne pollen quantities from hazel, birch and grass. Grana, 37, 172–179.Google Scholar
  57. Galán, C., García-Mozo, H., Vázquez, L., Ruiz-Valenzuela, L., Díaz de la Guardia, C., & Trigo Pérez, M. (2005). Heat requirement for the onset of the Olea europaea L. pollen season in several places of Andalusia region and the effect of the expected future climate change. International Journal of Biometeorology, 49(3), 184–188.Google Scholar
  58. García-Mozo, H. (2011). The use of aerobiological data on agronomical studies. Annals of Agricultural and Environmental Medicine, 18, 159–164.Google Scholar
  59. García-Mozo, H., Chuine, I., Aira, M. J., Belmonte, J., Bermejo, D., Díaz de la Guardia, C., et al. (2008). Regional phenological models for forecasting the start and peak of the Quercus pollen season in Spain. Agricultural and Forest Meteorology, 148, 372–380.Google Scholar
  60. García-Mozo, H., Galán, C., Alcázar, P., Díaz de la Guardia, C., Nieto-Lugilde, D., Recio, M., et al. (2010a). Trends in grass pollen season in Southern Spain. Aerobiologia, 26, 157–169.Google Scholar
  61. García-Mozo, H., Galán, C., Jato, V., Belmonte, J., Díaz de la Guardia, C., Fernández, D., et al. (2006). Quercus pollen season dynamics in the Iberian Peninsula: Response to meteorological parameters and possible consequences of climate change. Annals of Agricultural and Environmental Medicine, 13, 209–224.Google Scholar
  62. García-Mozo, H., Mestre, A., & Galán, C. (2010b). Phenological trends in Southern Spain: A response to climate change. Agricultural and Forest Meteorology, 150, 575–580.Google Scholar
  63. Gbili, Z. O. (1992). Status of forest conservation for maintenance of biodiversity. In R. P. Adams & J. E. Adams (Eds.), Plant genes, DNA banking and in vitro technology (pp. 15–20). Gland, Switzerland; Cambridge, United Kingdom: International Union for Conservation of Nature and Natural Resources.Google Scholar
  64. Gömöry, D., Paule, L., Brus, R., Zhelev, P., Tomović, Z., & Gračan, J. (1999). Genetic differentiation and phylogeny of beech on the Balkan peninsula. Journal of Evolutionary Biology, 12, 746–754.Google Scholar
  65. Hasenkamp, N., Ziegenhagen, B., Mengel, C., Schulze, L., Schmitt, H.-P., & Liepelt, S. (2011). Towards a DNA marker assisted seed source identification: A pilot study in European beech (Fagus sylvatica L.). European Journal of Forest Research, 130, 513–519. doi:10.1007/s10342-010-0439-3.Google Scholar
  66. Hedhly, A., Hormaza, J. I., & Herrero, M. (2009). Global warming and sexual plant reproduction. Trends in Plant Science, 14(1), 30–36.Google Scholar
  67. Heywood, V. H. (1995). A global strategy for the conservation of plant diversity. Grana, 34(6), 363–366. doi:10.1080/00173139509429467.Google Scholar
  68. Hilton-Taylor, C. (2000). 2000 IUCN Red List of threatened species. Gland, Switzerland; Cambridge, United Kingdom: International Union for Conservation of Nature.Google Scholar
  69. Jäeger, S., Nilsson, S., Berggren, B., Pessi, A. M., Helander, M., & Ramfjord, H. (1996). Trends of some airborne tree pollen in the Nordic countries and Austria, 1980–1993. A comparison between Stockholm, Trondheim, Turku and Vienna. Grana, 35, 171–178.Google Scholar
  70. Konnert, M. (1995). Investigations on the genetic variation of beech (Fagus sylvatica L.) in Bavaria. Silvae Genetica, 44, 346–351.Google Scholar
  71. Konnert, M., & Hussendörfer, E. (2002). Provenance identification of forest reproductive material using reference samples. Allgemeine Forst- un Jagdzeitung, 173, 97–104.Google Scholar
  72. Křivánek, M., & Pyšek, P. (2006). Predicting invasions by woody species in a temperate zone: A test of three risk assessment schemes in the Czech Republic (Central Europe). Diversity and Distributions, 12(3), 319–327. doi:10.1111/j.1366-9516.2006.00249.x.Google Scholar
  73. Kullman, L. (2001). Twentieth century climate warming and tree-limit rise in the southern scandes of Sweden. Ambio, 30, 72–80.Google Scholar
  74. Laaidi, M. (2001). Regional variations in the pollen season of Betula in Burgundy: Two models for predicting the start of the pollination. Aerobiologia, 17, 247–254.Google Scholar
  75. Laaidi, K., & Laaidi, M. (1999). Airborne pollen of Ambrosia in Burgundy (France) 1996–1997. Aerobiologia, 15, 65–69.Google Scholar
  76. Laaidi, M., Laaidi, K., Besancenot, J. P., & Thibaudon, M. (2003). Ragweed in France: An invasive plant and its allergenic pollen. Annals of Allergy, Asthma and Immunology, 91(2), 195–201.Google Scholar
  77. Lambin, E. F. (2005). Conditions for sustainability of human-environment systems: Information, motivation, and capacity. Global Environmental Change, 15, 177–180.Google Scholar
  78. Levetin, E., & Van de Water, P. (2001). Environmental contributions to allergic disease. Current Allergy and Asthma Reports, 1, 506–514.Google Scholar
  79. Levin, D. A. (1981). Gene flow versus dispersal in plants. Annals of the Missouri Botanic Garden, 68, 233–253.Google Scholar
  80. Liepelt, S., Bialozyt, R., & Ziegenhagen, B. (2002). Wind-dispersed pollen mediates post-glacial gene flow among refugia. Proceedings of the National Academy of Sciences USA, 99, 14590–14594.Google Scholar
  81. Lindbladh, M., Niklasson, M., Karlsson, M., Björkman, L., & Chruski, M. (2008). Close anthropogenic control of Fagus sylvatica establishment and expansion in a Swedish protected landscape—implications for forest history and conservation. Journal of Biogeography, 35, 682–697. doi:10.1111/j.1365-2699.2007.01813.x.Google Scholar
  82. López-Pujol, J., Zhang, F.-M., & Ge, S. (2006). Plant biodiversity in China: Richly varied, endangered, and in need of conservation. Biodiversity and Conservation, 15, 3983–4026. doi:10.1007/s10531-005-3015-2.Google Scholar
  83. Lowry, P. P. I. I., & Smith, P. P. (2003). Closing the gulf between botanists and conservationists. Conservation Biology, 17, 1175–1176.Google Scholar
  84. Mabberley, D. J. (1987). The plant-book: A portable dictionary of the higher plants. New York, USA: Press Syndicate of the University of Cambridge.Google Scholar
  85. Magri, D., Vendramin, G. G., Comps, B., Dupanloup, I., Geburek, T., Gömöry, D., et al. (2006). A new scenario for the Quaternary history of European beech populations: Paleobotanical evidence and genetic consequences. The New Phytologist, 171, 199–221. doi:10.1111/j.1469-8137.2006.01740.x.Google Scholar
  86. Menzel, A., Sparks, T. H., Estrella, N., et al. (2006). European phenological response to climate change matches the warming pattern. Global Change Biology, 12, 1969–1976.Google Scholar
  87. Meshinev, T., Apostolova, I., & Koleva, E. (2000). Influence of warming on timberline rising: A case study on Pinus peuce Griseb in Bulgaria. Phytocoenologia, 30(3–4), 431–438.Google Scholar
  88. Muhs, H.-J., & Von Wuehlisch, G. (1993). European network for the evaluation of genetic resources of beech. In L. Paule, I. Shvadchak, & D. Gömöry (Eds.), Genetics, ecology and silviculture of beech. Zvolen, Slovakia: Arbora Publishers.Google Scholar
  89. Muona, O. (1990). Population genetics in forest tree improvement. In A. H. D. Brown, M. T. Clegg, A. L. Kahler, & B. S. Weir (Eds.), Plant population genetics, breeding and genetic resources (pp. 282–298). Sunderland: Sinauer.Google Scholar
  90. Newnham, R. M. (1999). Monitoring biogeographical response to climate change: The potential role of aeropalynology. Aerobiologia, 15, 87–94.Google Scholar
  91. Nualart, N. (2003). Modelització de la distribució potencial a Catalunya de 24 espècies vegetals vasculars. Barcelona, Spain: Universitat de Barcelona.Google Scholar
  92. Orlandi, F., García-Mozo, H., Ben Dhiab, A., Galán, C., Msallem, M., Romano, B., et al. (2013). Climatic índices in the interpretation of the phenological phases of the olive in Mediterranean areas during its biological cycle. Climatic Change, 116, 263–284. doi:10.1007/s10584-012-0474-9.Google Scholar
  93. Orlandi, F., Romano, B., & Fornaciari, M. (2005a). Relationship between pollen emission and fruit production in olive (Olea europaea L.). Grana, 44(2), 98–103.Google Scholar
  94. Orlandi, F., Ruga, L., Romano, B., & Fornaciari, M. (2005b). Olive flowering as an indicator of local climatic changes. Theoretical and Applied Climatology, 81, 169–176.Google Scholar
  95. Osborne, C. P., Chuine, I., Viner, D., & Woodward, F. I. (2000). Olive phenology as a sensitive indicator of future climatic warming in the Mediterranean. Plant, Cell and Environment, 23, 701–710.Google Scholar
  96. Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37–42.Google Scholar
  97. Paule, L. (1995). Gene conservation in European beech (Fagus sylvatica L.). Forest Genetics, 2(3), 161–170.Google Scholar
  98. Pauli, H., Gottfried, M., & Grabherr, G. (2001). High summits of the Alps in a changing climate. The oldest observation series on high mountain plant diversity in Europe. In G. R. Walther, C. A. Burga, & P. J. Edwards (Eds.), Fingerprints of climate change. Adapted behaviour and shifting species range (pp. 139–149). New York, USA: Kluwer Academic/Plenum Publishers.Google Scholar
  99. Peeters, A. G. (2000). Ambrosia sp. pollen in Switzerland. Aerobiologia, 16, 295–297.Google Scholar
  100. Peñuelas, J., & Boada, M. (2003). A global change-induced biome shift in the Montseny mountains (NE Spain). Global Change Biology, 9, 131–140.Google Scholar
  101. Peñuelas, J., Filella, I., & Comas, P. (2002). Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Global Change Biology, 8, 531–544.Google Scholar
  102. Pitcher, T. J., & Pauly, D. (1998). Rebuilding ecosystems, not sustainability, as the proper goal of fishery management. In T. J. Pitcher, D. Pauly, & P. Hart (Eds.), Reinventing fisheries management. Dordrecht, The Netherlands: Kluwer.Google Scholar
  103. Pitman, N. C. A., & Jørgensen, P. M. (2002). Estimating the size of the World’s threatened flora. Science, 298, 989.Google Scholar
  104. Rasmussen, A. (2002). The effects of climate change on the birch pollen season in Denmark. Aerobiologia, 18, 253–265.Google Scholar
  105. Recio, M., Rodríguez-Rajo, J., Jato, V., Trigo, M. M., & Cabezudo, B. (2009). The effect of recent climatic trends on Urticaceae pollination in two bioclimatically different areas in the Iberian Peninsula: Málaga and Vigo. Climatic Change, 97, 215–228.Google Scholar
  106. Rejmánek, M., Richardson, D. M., & Pyšek, P. (2005). Plant invasions and invasibility of plant communities. In E. van der Maarel (Ed.), Vegetation ecology (pp. 332–355). Oxford, United Kingdom: Blackwell.Google Scholar
  107. Rocha Afonso, M.L. (1990). 1. Fagus L. In: S. Castroviejo et al. (Eds.), Flora Iberica, vol. II. Madrid, Spain: CSIC—Real Jardín Botánico.Google Scholar
  108. Sanz-Elorza, M., Dana, E. D., González, A., & Sobrino, E. (2003). Changes in the high-mountain vegetation of the Central Iberian Peninsula as probable sign of global warming. Annals of Botany, 92(2), 273–280. doi:10.1093/aob/mcg130.Google Scholar
  109. Schmidt-Lebuhn, A. N., Seltmann, P., & Kessler, M. (2007). Consequences of the pollination system on genetic structure and patterns of species distribution in the Andean genus Polylepis (Rosaceae): a comparative study. Plant Systematics and Evolution, 266, 91–103.Google Scholar
  110. Schubert, R., Hilbig, W., & Klotz, S. (2001). Bestimmungsbuch der Pflanzengesellschaften Deutschlands. Heidelberg, Berlin, Germany: Spektrum Akademischer Verlag.Google Scholar
  111. Sharma, C. M., & Khanduri, V. P. (2007). Pollen-mediated gene flow in Himalayan long-needle pine (Pinus rowburghii Sargent). Aerobiologia, 23, 153–158.Google Scholar
  112. Simberloff, D. (1988). The contribution of population and community biology to conservation science. Annual Review of Ecology Evolution and Systematics, 19, 473–511.Google Scholar
  113. Skjøth, C. A., Smith, M., Šikoparija, B., Stach, A., Myszkowska, D., Kasprzyk, I., et al. (2010). A method for producing airborne pollen source inventories: An example of Ambrosia (ragweed) on the Pannonian Plain. Agricultural and Forest Meteorology, 150(9), 1203–1210. doi:10.1016/j.agrformet.2010.05.002.Google Scholar
  114. Smith, M., Emberlin, J., Stach, A., Rantio-Lehtimäki, A., Caulton, E., Thibaudon, M., et al. (2009). Influence of the North Atlantic Oscillation on grass pollen counts in Europe. Aerobiologia, 25, 321–332. doi:10.1007/s10453-009-9136-4.Google Scholar
  115. Smith, P. P., Lowry, P. P, I. I., Timberlake, J., & Golding, J. S. (2004). Letters. Conservation Biology, 18, 9–10.Google Scholar
  116. Smouse, P., Dyer, R. J., Westfall, R. D., & Stork, V. L. (2001). Two-generation analysis of pollen flow across a landscape. I. Male gamete heterogeneity among females. Evolution, 55, 260–271.Google Scholar
  117. Spieksma, F. T. M., Emberlin, J. C., Hjelmroos, M., Jäger, S., & Leuschner, R. M. (1995). Atmospheric birch (Betula) pollen in Europe: Trends and fluctuations in annual quantities and the starting dates of the seasons. Grana, 34, 51–57.Google Scholar
  118. Stach, A., Emberlin, J., Smith, M., Adams-Groom, B., & Myszkowska, D. (2008). Factors that determine the severity of Betula spp. pollen seasons in Poland (Poznań and Krakow) and the United Kingdom (Worcester and London). International Journal of Biometeorology, 52, 311–321. doi:10.1007/s00484-007-0127-2.Google Scholar
  119. Taramarcaz, P., Lambelet, C., Clot, B., Keimer, C., & Hauser, C. (2005). Ragweed (Ambrosia) progression and its health risks: will Switzerland resist this invasion? Swiss Medical Weekly, 135, 538–548.Google Scholar
  120. Teranishi, H., Kenda, Y., Katoh, T., Kasuya, M., Oura, E., & Taira, H. (2000). Possible role of climate change in the pollen scatter of Japanese cedar Cryptomeria japonica in Japan. Climate Research, 14, 65–70.Google Scholar
  121. Theurillat, J.-P. (1995). Climate change and the alpine flora: Some perspectives. In A. Guisan, J. I. Holten, R. Spichiger, & L. Tessier (Eds.), Potential ecological impacts of climate change in the Alps and Fennoscandian mountains (pp. 121–127). Geneva, Switzerland: Conservatoire du Jardin Botanique de Genève.Google Scholar
  122. Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L., et al. (2004). Extinction risk from climate change. Nature, 427, 145–148.Google Scholar
  123. Thuiller, W. (2004). Patterns and uncertainties of species’ range shifts under climate change. Global Change Biology, 10, 2020–2027.Google Scholar
  124. Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T., & Prentice, C. (2005). Climate change threats to plant diversity in Europe. Proceeding of the National Academy of Sciences of the United States of America, 102(23), 8245–8250. doi:10.1073/pnas.0409902102.Google Scholar
  125. Tormo, R., Silva, I., Gonzalo, A., Moreno, A., Pérez, R., & Fernández, S. (2011). Phenological records as a complement to aerobiological data. International Journal of Biometeorology, 55, 51–65. doi:10.1007/s00484-010-0308-2.Google Scholar
  126. Trigo, M. M., Recio, M., Docampo, S., Melgar, M., & Cabezudo, B. (2006). The use of aerobiological data as indicators of climate change. In B. Clot (Ed.), The 8th International Congress on aerobiology. Neuchâtel, Switzerland: International Association for Aerobiology.Google Scholar
  127. Valencia-Barrera, R. M., Comtois, P., & Fernández-González, D. (2001). Biogeography and bioclimatology in pollen forecasting. Grana, 40(4–5), 223–229.Google Scholar
  128. Vollrath, B. (2005). Autochthonie im Praxistest—vegleichende Untersuchungen bei Gehölzanpflanzungen. In Forstliche Genressourcen als Produktionsfaktor, 26. Tagung der Arbeitsgemeinschaft Forstgenetik und Forstpflanzenzüchtung (pp. 20–22). Germany: Fuldatal.Google Scholar
  129. Walter, K. S., & Gillett, H. J. (1998). 1997 IUCN Red List of threatened plants. Gland and Cambridge: International Union for Conservation of Nature.Google Scholar
  130. Walther, G. R., Post, E., Convery, P., et al. (2002). Ecological responses to recent climate change. Nature, 416, 389–395.Google Scholar
  131. Wan, S., Yuan, T., Bowdish, S., Wallace, L., Russell, S. D., & Luo, Y. (2002). Response of an allergenic species, Ambrosia psilostachya (Asteraceae), to experimental warming and clipping: implications for public health. American Journal of Botany, 89, 1843–1846.Google Scholar
  132. Wayne, P., Foster, S., Connolly, J., Bazzaz, F., & Epstein, P. (2002). Production of allergenic pollen by ragweed (Ambrosia artemisiifolia L.) is increased in CO2-enriched atmospheres. Annals of Allergy, Asthma and Immunology, 88, 279–282.Google Scholar
  133. Womack, A. M., Bohannan, B. J. M., & Green, J. L. (2010). Biodiversity and biogeography of the atmosphere. Philosophical Transactions of the Royal Society B, 365, 3645–3653. doi:10.1098/rstb. 2010.0283.Google Scholar
  134. Ziska, L. H., & Caulfield, F. A. (2000). Rising carbon dioxide and pollen production of common ragweed, a known allergy-inducing species: Implications for public health. Australian Journal of Plant Physiology, 27, 893–898.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Álvaro Fernández-Llamazares
    • 1
    • 2
  • Jordina Belmonte
    • 1
    • 2
  • Martí Boada
    • 1
  • Sara Fraixedas
    • 1
    • 3
  1. 1.Institut de Ciència i Tecnologia Ambientals (ICTA), Edifici C, Torre C5-parells, 4a plantaUniversitat Autònoma de BarcelonaBellaterra, Cerdanyola del Vallès, BarcelonaSpain
  2. 2.Departament de Biologia Animal, Biologia Vegetal i EcologiaUniversitat Autònoma de BarcelonaBellaterra, Cerdanyola del Vallès, BarcelonaSpain
  3. 3.The Helsinki Lab of Ornithology (HelLO), Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland

Personalised recommendations