Skip to main content
Log in

Emission rate of charged spores in basidiomycetous fungi and the relaxation time of their electric charges

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Basidiospores are one of the main components of coarse fraction of atmospheric aerosol. Majority of them, the ballistospores of 20,000 species of Basidiomycotina, carry electrostatic charges when getting airborne. To study the polarity and magnitude of primary charges and the hymenial emission rate of charged spores, 128 spore samples of 31 species of Agaricomycetes were collected in natural conditions. A portable device was placed under the fruiting body and the freely falling charged spores were extracted from the air by a horizontal homogeneous electrostatic field. The charge polarity distribution was the same in all intraspecies spore samples; it was unipolar-positive, unipolar-negative, or bipolar, depending on the species. The mean spore charge magnitude was 21–981 e, and it was not related to the emission rate of charged spores. The hymenial emission rate was fluctuating, and the maximum value was 715 charged spores cm−2 s−1. To estimate the territorial emission rate of charged spores, area of the hymenial surface per hectare of forest was calculated for three species and the maximum values were 11 m2 ha−1 and 8.6 × 107 charged spores ha−1 s−1. Calculations showed that a spore charge diminished sevenfold within 47 min. Ecologists, health and agricultural scientists could be interested in this information. It could be useful by investigating the role of microorganisms in meteorological phenomena and in atmospheric processes in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bowker, G. E., & Crenshaw, H. C. (2003). The influence of fair weather electricity on the charging of wind-dispersed pollen. Proceedings of 12th international conference on atmospheric electricity, 913 June 2003, Versailles, France, Vol. I, 361–364.

  • Bowker, G. E., & Crenshaw, H. C. (2007). Electrostatic forces in wind-pollination–part 1: Measurement of the electrostatic charge on pollen. Atmospheric Environment, 41(8), 1587–1595.

    Article  CAS  Google Scholar 

  • Buchwald, N. F. (1938). Om Sporenproduktiones storrelse hos Tøndersvampen Polyporus fomentarius (L.) Fr. Friesia, 2(1), 42–69. (Cited after Votintseva 2005).

  • Buller, A. H. R. (1909). Researches on fungi (Vol. 1). London: Longmans.

    Google Scholar 

  • Chalmers, J. A. (1967). Atmospheric electricity (2nd ed.). Oxford: Pergamon Press.

    Google Scholar 

  • Corner, E. J. H. (1968). A monograph of Thelephora. Basidiomycetes. Nova Hedwigia. Beiheft, 27, 1–100.

    Google Scholar 

  • Dales, R. E., Cakmak, S., Burnett, R. T., Judek, S., Coates, F., & Brook, J. R. (2000). Influence of ambient fungal spores on emergency visits for asthma to a regional children’s hospital. American Journal of Respiratory and Critical Care Medicine, 162(6), 2087–2090.

    Article  CAS  Google Scholar 

  • Delfino, R. J., Zeiger, R. S., Seltzer, J. M., Street, D. H., Matteucci, R. M., Anderson, P. R., et al. (1997). The effect of outdoor fungal spore concentrations on daily asthma severity. Environmental Health Perspectives, 105(6), 622–635.

    Article  CAS  Google Scholar 

  • Eriksson, J., Hjortstam, K., & Ryvarden, L. (1984). The Corticiaceae of North Europe (Vol. 7). Oslo: Fungiflora.

    Google Scholar 

  • Eriksson, J., & Ryvarden, L. (1975). The Corticiaceae of North Europe (Vol. 3). Oslo: Fungiflora.

    Google Scholar 

  • Fairs, A., Wardlaw, A. J., Thompson, J. R., & Pashley, C. H. (2010). Guidelines on Ambient Intramural Airborne Fungal Spores. Journal of Investigational Allergology and Clinical Immunology, 20(6), 490–498.

    CAS  Google Scholar 

  • Fischer, M. W. F., & Money, N. P. (2009). Why mushrooms form gills: Efficiency of the lamellate morphology. Mycological Research,. doi:10.1016/j.mycres.2009.10.006.

    Google Scholar 

  • Galante, T. E., Horton, T. R., & Swaney, D. P. (2011). 95% of basidiospores fall within 1 m of the cap: a field- and modeling-based study. Mycologia, 103(6), 1175–1183.

    Article  Google Scholar 

  • Gilbertson, R. L., & Hemmes, D. E. (1997). Notes on Hawaiian Coniophoraceae. Mycotaxon, 65, 427–442.

    Google Scholar 

  • Gregory, P. H. (1957). Electrostatic charges on spores of fungi. Nature, London 130, 330.

    Google Scholar 

  • Gregory, P. H. (1973). The microbiology of the atmosphere (2nd ed.). New York: Wiley.

    Google Scholar 

  • Haard, R. T., & Kramer, C. L. (1970). Periocity of spore discharge in the Hymenomycetes. Mycologia, 62(6), 1145–1169.

    Article  Google Scholar 

  • Haldane, J. B. S. (1955). The measurement of variation. Evolution, 18, 484.

    Article  Google Scholar 

  • Hirsikko, A., Nieminen, T., Gagné, S., Lehtipalo, K., Manninen, H. E., Ehn, M., Hõrrak, U., Kerminen, V.-M., Laakso, L., McMurry, P. H., Mirme, A., Mirme, S., Petäjä, T., Tammet, H., Vakkari, V., Vana, M., & Kulmala, M. (2010). Atmospheric ions and nucleation: a review of observations. Atmospheric Chemistry and Physics Discussions, 10(10), 24245–24324. http://www.atmos-chem-phys-discuss.net/10/24245/2010. Accessed 9 January 2011.

  • Hõrrak, U., Salm, J., & Tammet, H. (2000). Statistical characterization of air ion mobility spectra at Tahkuse Observatory: Classification of air ions. J Geophys Res Atmospheres, 105, 9291–9302.

    Article  Google Scholar 

  • Ingold, C. (2001). Range in size and form of basidiospores and ascospores. Mycologist, 15(4), 165–166.

    Article  Google Scholar 

  • Kadowaki, K., Leschen, R. A. B., & Beggs, J. R. (2010). Periodicity of spore release from individual Ganoderma fruiting bodies in a natural forest. Australasian Mycologist, 29, 17–23.

    Google Scholar 

  • Kalamees, K. (1971a). Peculiarities in the growth and development of fruit-bodies in some fungal species. Estonian Contribution to the International Biological Programme, III (pp. 47–62). Tartu: Eesti NSV Teaduste Akadeemia.

  • Kalamees, K. (1971b). The key to Estonian fungi. 1. Tartu: Tartu Riiklik Ülikool. (In Estonian).

  • Kalamees, K. (1972). The key to Estonian fungi. 2. Tartu: Tartu Riiklik Ülikool. (In Estonian.).

  • Kalamees, K., & Kollom, A. (1971). On the biological productivity of Agaricales in forest ecosystems. Estonian contributions to the International Biological Programme: progress report III (pp. 29–46). Tartu: Eesti NSV Teaduste Akadeemia.

  • Kalamees, K., & Silver, S. (1988). Fungal productivity of pine heaths in North-West Estonia. Acta Botanica Fennica, 136, 95–98.

    Google Scholar 

  • Krastina, I. (2000). Species composition and dynamics of sporocarp production of macrofungi in pine forests with Vaccinium myrtillus in northern Latvia. Folia Cryptogamica Estonica, 37, 39–50.

    Google Scholar 

  • Krigul, T. (1969). Forest surveyor’s reference book. Tartu: Eesti Põllumajanduse Akadeemia. (In Estonian.).

  • Lebkova, G. N. (1972). Sporulation of polyporous fungi in Siberian pine forests in western Sayans. Algae and fungi in Siberia and Far East, 2(4), 147–151. (In Russian).

    Google Scholar 

  • Lõugas, T. (1980). About the resources of edible fungi in some forest site types of Lahemaa National Park. In Year-book of the Estonian Naturalists’ Society, volume 68 (pp. 32–49). Tartu: Eesti Loodusuurijate Selts. (In Estonian, with summary in English.).

  • Meyer, H. (1936). Spore formation and discharge in Fomes fomentarius. Phytopathology, 26, 1155–1156. (Cited after Votintseva 2005).

    Google Scholar 

  • Moore, D., Gange, A. C., Gange, E. G., & Boddy, L. (2008). Fruit bodies: their production and development in relation to environment. In: L. Boddy, J. C. Frankland, P. van West (Eds.), Ecology of Saprotrophic Basidiomycetes (pp. 79–103). Amsterdam. eScholarID:130295.

  • Morris, C. E., Sands, D. C., Bardin, M., Jaenicke, R., Vogel, B., Leyronas, C., et al. (2011). Microbiology and atmospheric processes: Research challenges concerning the impact of airborne micro-organisms on the atmosphere and climate. Biogeosciences, 8(1), 17–25.

    Article  CAS  Google Scholar 

  • Nakasone, K. K. (2006). Dendrothele griseocana (Corticiaceae) and related taxa with hyphal pegs. Nowa Hedwigia, Beiheft 83(1–2), 99–108. (Stuttgart).

  • Neas, L. M., Dockery, D. W., Burge, H., Koutrakis, P., & Speizer, F. E. (1996). Fungus spores, air pollutants, and other determinants of peak expiratory flow rate in children. American Journal of Epidemiology, 143(8), 797–807.

    Article  CAS  Google Scholar 

  • Niemelä, T. (2008). Polypores in Finnland and Estonia. Tartu: Eesti Loodusfoto. (In Estonian.).

  • Parmasto, E. (1981). Quantitative characteristics of sporulation in wood-destroying polyporous fungi. Vtoraja vsesojuznaja konferencija po biopovreždenij. Tezisy dokladov. Čast II (pp. 138–139). Gor’’kij (Russia). (In Russian.).

  • Rockett, T. R., & Kramer, C. L. (1974). Periodicity and total spore production by lignicolous basidiomycetes. Mycologia, 66(5), 817–829.

    Article  CAS  Google Scholar 

  • Roos, R. A. (1996). The forgotten pollution. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Saar, M. (2013). Investigation of the electrostatic charge of basidiospores of the Phellinus igniarius group. Central European Journal of Biology, 8(5), 410–422.

    Article  Google Scholar 

  • Salm, J., & Tamm, E. (2011). Dependence of the ion-aerosol equivalent attachment coefficient on the ratio of polar conductivities in a steady state. Aerosol and Air Quality Research, 11, 211–217.

    Google Scholar 

  • Seinfeld, J. H., & Pandis, S. N. (2006). Atmospheric chemistry and physics: from air pollution to climate change (2nd ed.). Hoboken: Wiley.

    Google Scholar 

  • Sell, I. (2008). Taxonomy of the species in the Phellinus igniarius group. Mycotaxon, 104, 337–347.

    Google Scholar 

  • Stolze-Rybczynski, J. L., Cui, Y., Stevens, M. H. H., Davis, D. J., Fischer, M. W. F., & Money, N. P. (2009). Adaptation of the spore discharge mechanism in the basidiomycota. PLoS ONE, 2009(4), e4163. doi:10.1371/journal.pone.0004163.

    Article  Google Scholar 

  • Swinbank, P., Taggart, J., & Hutchinson, S. A. (1964). The measurement of electrostatic charges on spores of Merulius lacrymans (Wulf.) Fr. Annals of Botany, 28, 239–249.

    Article  Google Scholar 

  • Tamm, Ü. (2000). Aspen in Estonia. Tartu: Eesti Loodusfoto. (In Estonian, with summary in English.).

  • Votintseva, A. A. (2005). Ecological characteristics and biotic linkages in mono- and dicaryotic polyporous fungi. 03.00.16–Ecology. Dissertation for the Candidate degree in Biology. Scientific supervisor V. A. Muhin, PhD. The Ural State University named after A. M. Gorky, Ekaterinburg, Russia. Manuscript. UDK 574:581.524.1:582.284.5. (In Russian.).

  • Webster, J., Procton, M. C. F., Davey, R. A., & Duller, G. A. (1988). Measurement of the electrical charge on some basidiospores and an assessment of two possible mechanisms of ballistospore propulsion. Transactions of the British Mycological Society, 91(2), 193–203.

    Article  Google Scholar 

  • Winiwarter, W., Bauer, H., Caseiro, A., & Puxbaum, H. (2009). Quantifying emissions of primary biological aerosol particle mass in Europe. Atmospheric Environment, 43(7), 1403–1409.

    Article  CAS  Google Scholar 

  • Zhang, T., Engling, G., Chan, C., Zhang, Y., Zhang, Z., Lin, M., Sang, X., Li, Y. D. & Li, Y. (2010). Contribution of fungal spores to particulate matter in a tropical rainforest. Environmental Research Letters, 5(2), 024010 (9 pp).

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Doctoral School of Earth Sciences and Ecology created under the auspice of European Social Fund and, in part, by the Estonian Science Foundation through grant 8342. Thanks are due to Kuulo Kalamees and Ülo Tamm for consultations, Leho Tedersoo for critical remarks and Urve Martinson for linguistic help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maret Saar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saar, M., Salm, J. Emission rate of charged spores in basidiomycetous fungi and the relaxation time of their electric charges. Aerobiologia 30, 71–89 (2014). https://doi.org/10.1007/s10453-013-9310-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-013-9310-6

Keywords

Navigation